Displaying similar documents to “Lie algebras of derivations and affine algebraic geometry over fields of characteristic 0.”

Left-symmetric algebras, or pre-Lie algebras in geometry and physics

Dietrich Burde (2006)

Open Mathematics

Similarity:

In this survey article we discuss the origin, theory and applications of left-symmetric algebras (LSAs in short) in geometry in physics. Recently Connes, Kreimer and Kontsevich have introduced LSAs in mathematical physics (QFT and renormalization theory), where the name pre-Lie algebras is used quite often. Already Cayley wrote about such algebras more than hundred years ago. Indeed, LSAs arise in many different areas of mathematics and physics. We attempt to give a survey of the fields...

Contractions of Lie algebras and algebraic groups

Dietrich Burde (2007)

Archivum Mathematicum

Similarity:

Degenerations, contractions and deformations of various algebraic structures play an important role in mathematics and physics. There are many different definitions and special cases of these notions. We try to give a general definition which unifies these notions and shows the connections among them. Here we focus on contractions of Lie algebras and algebraic groups.

The construction of 3-Lie 2-algebras

Chunyue Wang, Qingcheng Zhang (2018)

Czechoslovak Mathematical Journal

Similarity:

We construct a 3-Lie 2-algebra from a 3-Leibniz algebra and a Rota-Baxter 3-Lie algebra. Moreover, we give some examples of 3-Leibniz algebras.