Left-symmetric algebras, or pre-Lie algebras in geometry and physics
Open Mathematics (2006)
- Volume: 4, Issue: 3, page 323-357
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topDietrich Burde. "Left-symmetric algebras, or pre-Lie algebras in geometry and physics." Open Mathematics 4.3 (2006): 323-357. <http://eudml.org/doc/269024>.
@article{DietrichBurde2006,
abstract = {In this survey article we discuss the origin, theory and applications of left-symmetric algebras (LSAs in short) in geometry in physics. Recently Connes, Kreimer and Kontsevich have introduced LSAs in mathematical physics (QFT and renormalization theory), where the name pre-Lie algebras is used quite often. Already Cayley wrote about such algebras more than hundred years ago. Indeed, LSAs arise in many different areas of mathematics and physics. We attempt to give a survey of the fields where LSAs play an important role. Furthermore we study the algebraic theory of LSAs such as structure theory, radical theory, cohomology theory and the classification of simple LSAs. We also discuss applications to faithful Lie algebra representations.},
author = {Dietrich Burde},
journal = {Open Mathematics},
keywords = {17-02; 22-02 53-02},
language = {eng},
number = {3},
pages = {323-357},
title = {Left-symmetric algebras, or pre-Lie algebras in geometry and physics},
url = {http://eudml.org/doc/269024},
volume = {4},
year = {2006},
}
TY - JOUR
AU - Dietrich Burde
TI - Left-symmetric algebras, or pre-Lie algebras in geometry and physics
JO - Open Mathematics
PY - 2006
VL - 4
IS - 3
SP - 323
EP - 357
AB - In this survey article we discuss the origin, theory and applications of left-symmetric algebras (LSAs in short) in geometry in physics. Recently Connes, Kreimer and Kontsevich have introduced LSAs in mathematical physics (QFT and renormalization theory), where the name pre-Lie algebras is used quite often. Already Cayley wrote about such algebras more than hundred years ago. Indeed, LSAs arise in many different areas of mathematics and physics. We attempt to give a survey of the fields where LSAs play an important role. Furthermore we study the algebraic theory of LSAs such as structure theory, radical theory, cohomology theory and the classification of simple LSAs. We also discuss applications to faithful Lie algebra representations.
LA - eng
KW - 17-02; 22-02 53-02
UR - http://eudml.org/doc/269024
ER -
References
top- [1] A. d’Andrea and V.G. Kac: “Structure theory of finite conformal algebras”, Selecta Math., Vol. 4, (1998), pp. 377–418. http://dx.doi.org/10.1007/s000290050036 Zbl0918.17019
- [2] L. Auslander: “Simply transitive groups of affine motions”, Am. J. Math., Vol. 99, (1977), pp. 809–826. Zbl0357.22006
- [3] C. Bai and D. Meng: “A Lie algebraic approach to Novikov algebras”, J. Geom. Phys. Vol. 45(1–2), (2003), pp. 218–230. http://dx.doi.org/10.1016/S0393-0440(02)00150-X Zbl1033.17001
- [4] A.A. Balinskii and S.P. Novikov: “Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras”, Sov. Math. Dokl., Vol. 32, (1985), pp. 228–231. Zbl0606.58018
- [5] B. Bakalov and V. Kac: “Field algebras”, Int. Math. Res. Not., Vol. 3, 2003, pp. 123–159. http://dx.doi.org/10.1155/S1073792803204232 Zbl1032.17045
- [6] O. Baues: “Left-symmetric algebras for gl(n)”, Trans. Amer. Math. Soc., Vol. 351(7), (1999), pp. 2979–2996. http://dx.doi.org/10.1090/S0002-9947-99-02315-6 Zbl1113.17301
- [7] Y. Benoist: “Une nilvariété non affine”, J. Differential Geom., Vol. 41, (1995), pp. 21–52.
- [8] J.P. Benzécri: Variétés localement affines, Thèse, Princeton Univ., Princeton, N.J., 1955.
- [9] R.E. Borcherds: “Vertex algebras, Kac-Moody algebras, and the Monster”, Proc. Nat. Acad. Sci., Vol. 83(10), (1986), pp. 3068–3071. http://dx.doi.org/10.1073/pnas.83.10.3068 Zbl0613.17012
- [10] N. Boyom: “Sur les structures affines homotopes à zéro des groupes de Lie”, J. Diff. Geom., Vol. 31, (1990), pp. 859–911. Zbl0708.53042
- [11] D. Burde: “Affine structures on nilmanifolds”, Int. J. Math., Vol. 7, (1996), pp. 599–616. http://dx.doi.org/10.1142/S0129167X96000323 Zbl0868.57034
- [12] D. Burde: “Simple left-symmetric algebras with solvable Lie algebra”, Manuscripta Math., Vol. 95, (1998), pp. 397–411. http://dx.doi.org/10.1007/s002290050037 Zbl0907.17008
- [13] D. Burde and K. Dekimpe: “Novikov structures on solvable Lie algebras”, J. Geom. Phys., (2006), to appear. Zbl1095.17004
- [14] D. Burde and F. Grunewald: “Modules for certain Lie algebras of maximal class”, J. Pure Appl. Algebra, Vol. 99, (1995), pp. 239–254. http://dx.doi.org/10.1016/0022-4049(94)00002-Z Zbl0845.17011
- [15] D. Burde: “Affine cohomology classes for filiform Lie algebras”, Contemporary Math., Vol. 262, (2000), pp. 159–170. Zbl0967.17017
- [16] D. Burde: Left-invariant affine structures on nilpotent Lie groups, Habilitation thesis, Düsseldorf, 1999.
- [17] D. Burde: “A refinement of Ado’s Theorem”, Archiv Math., Vol. 70, (1998), pp. 118–127. http://dx.doi.org/10.1007/s000130050173 Zbl0904.17006
- [18] D. Burde: “Estimates on binomial sums of partition functions”, Manuscripta Math., Vol. 103, (2000), pp. 435–446. http://dx.doi.org/10.1007/s002290070002 Zbl0983.11059
- [19] D. Burde: “Left-invariant affine structures on reductive Lie groups”, J. Algebra, Vol. 181, (1996), pp. 884–902. http://dx.doi.org/10.1006/jabr.1996.0151
- [20] A. Cayley: On the Theory of Analytic Forms Called Trees, Collected Mathematical Papers of Arthur Cayley, Vol. 3, Cambridge Univ. Press. Cambridge, 1890, 1890, pp. 242–246.
- [21] Y. Carriére, F. Dal’bo and G. Meigniez: “Inexistence de structures affines sur les fibres de Seifert”, Math. Ann., Vol. 296, (1993), pp. 743–753. http://dx.doi.org/10.1007/BF01445134
- [22] K.S. Chang, H. Kim and H. Lee: “On radicals of left-symmetric algebra”, Commun. Algebra, Vol. 27(7), (1999), pp. 3161–3175. Zbl0932.17002
- [23] K.S. Chang, H. Kim and H. Lee: “Radicals of a left-symmetric algebra on a nilpotent Lie group”, Bull. Korean Math. Soc. Vol. 41(2), (2004), pp. 359–369. http://dx.doi.org/10.4134/BKMS.2004.41.2.359 Zbl1143.17300
- [24] F. Chapoton and M. Livernet: “Pre-Lie algebras and the rooted trees operad”, Intern. Math. Research Notices, Vol. 8, (2001), pp. 395–408. http://dx.doi.org/10.1155/S1073792801000198 Zbl1053.17001
- [25] A. Connes and D. Kreimer: “Hopf algebras, renormalization and noncommutative geometry”, Comm. Math. Phys., Vol. 199(1), (1998), pp. 203–242. http://dx.doi.org/10.1007/s002200050499 Zbl0932.16038
- [26] K. Dekimpe and M. Hartl: “Affine structures on 4-step nilpotent Lie algebras” J. Pure Appl. Math., Vol. 129, (1998), pp. 123–134.
- [27] K. Dekimpe and W. Malfait: “Affine structures on a class of virtually nilpotent groups”, Topology Appl., Vol. 73, (1996), pp. 97–119. http://dx.doi.org/10.1016/0166-8641(96)00069-7 Zbl0878.20023
- [28] J. Dixmier and W.G. Lister: “Derivations of nilpotent Lie algebras”, Proc. Amer. Math. Soc., Vol. 8, (1957), pp. 155–158. http://dx.doi.org/10.2307/2032832 Zbl0079.04802
- [29] J. Dorfmeister: “Quasi-clans”, Abh. Math. Semin. Univ. Hamburg, Vol. 50, (1980), pp. 178–187. http://dx.doi.org/10.1007/BF02941427
- [30] A. Dzhumaldil’daev and C. Löfwall: “Trees, free right-symmetric algebras, free Novikov algebras and identities”, Homology Homotopy Appl., Vol. 4(2), (2002), pp. 165–190. Zbl1029.17001
- [31] A. Dzhumaldil’daev: “N-commutators”, Comment. Math. Helv., Vol. 79(3), (2004), pp. 516–553. Zbl1055.17011
- [32] A. Dzhumaldil’daev: “Cohomologies and deformations of right-symmetric algebras”, J. Math. Sci., Vol. 93(6), (1999), pp. 836–876. http://dx.doi.org/10.1007/BF02366344 Zbl0938.17002
- [33] I.B. Frenkel, Y. Huang and J. Lepowsky: “On axiomatic approaches to vertex operator algebras and modules”, Mem. Amer. Math. Soc., Vol. 104(494), (1993), pp. 1–64. Zbl0789.17022
- [34] I.B. Frenkel, J. Lepowsky and A. Meurman: Vertex operator algebras and the Monster. Pure and Applied Mathematics, Vol. 134, Academic Press, Boston, MA, 1988, pp. 1–508. Zbl0674.17001
- [35] M. Gerstenhaber: “The cohomology structure of an associative ring”, Ann. Math., Vol. 78, (1963), pp. 267–288. http://dx.doi.org/10.2307/1970343 Zbl0131.27302
- [36] V. Gichev: “On complete affine structures in Lie groups”, Preprint ArXiv.
- [37] W.A. de Graaf: “Constructing faithful matrix representations of Lie algebras”, In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, ACM, New York, pp. 54–59 (electronic). Zbl0957.17001
- [38] J. Helmstetter: “Radical d’une algèbre symétrique a gauche”, Ann. Inst. Fourier, Vol. 29, (1979), pp. 17–35. Zbl0403.16020
- [39] N. Jacobson: “A note on automorphisms and derivations of Lie algebras”, Proc. Amer. Math. Soc., Vol. 6, (1955), pp. 281–283. http://dx.doi.org/10.2307/2032356 Zbl0064.27002
- [40] N. Jacobson: “Schur’s theorem on commutative matrices”, Bull. Amer. Math. Soc., Vol. 50, (1944), pp. 431–436. http://dx.doi.org/10.1090/S0002-9904-1944-08169-X
- [41] V. Kac: Vertex algebras for beginners, University Lecture Series, Vol. 10, American Mathematical Society, Providence, 1998, pp. 1–201. Zbl0924.17023
- [42] H. Kim: “Complete left-invariant affine structures on nilpotent Lie groups”, J. Diff. Geom., Vol. 24, (1986), pp. 373–394. Zbl0591.53045
- [43] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry, Vols. I and II, Wiley-Interscience Publishers, New York and London, 1969. Zbl0175.48504
- [44] J.-L. Koszul: “Domaines bornés homogènes et orbites de groupes de transformations affines”, Bull. Soc. Math. France, Vol. 89, (1961), pp. 515–533 Zbl0144.34002
- [45] D. Kreimer: “New mathematical structures in renormalizable quantum field theories”, Ann. Phys., Vol. 303(1), (2003), pp. 179–202. http://dx.doi.org/10.1016/S0003-4916(02)00023-4 Zbl1011.81045
- [46] D. Kreimer: “Structures in Feynman Graphs-Hopf Algebras and Symmetries”, Proc. Symp. Pure Math., Vol. 73, (2005), pp. 43–78. Zbl1088.81077
- [47] N.H. Kuiper: Sur les surfaces localement affines, Colloque de Géometrie différentielle, Strasbourg, 1953, pp. 79–86.
- [48] J. Lepowsky and H. Li: “Introduction to Vertex Operator Algebras and Their Representations”, Progr. Math. Vol. 227, (2003), pp. 1–316.
- [49] J.P. May: “Geometry of Iterated Moduli Spaces”, Lecture Notes in Math., Vol. 271, 1972.
- [50] J. Milnor: “On fundamental groups of complete affinely flat manifolds”, Advances Math., Vol. 25, (1977), pp. 178–187. http://dx.doi.org/10.1016/0001-8708(77)90004-4
- [51] A. Mizuhara: “On the radical of a left-symmetric algebra”, Tensor N. S., Vol. 36, (1982), pp. 300–302. Zbl0497.17006
- [52] A. Mizuhara: “On the radical of a left-symmetric algebra II”, Tensor N. S., Vol. 40, (1983), pp. 221–232. Zbl0539.17002
- [53] T. Nagano and K. Yagi: “The affine structures on the real two torus”, Osaka J. Math., Vol. 11, (1974), pp. 181–210. Zbl0285.53030
- [54] A. Nijenhuis: “The graded Lie algebras of an algebra”, Indag. Math., Vol. 29, (1967), pp. 475–486. Zbl0153.36201
- [55] A. Nijenhuis: “On a class of common properties of some different types of algebras, II”, Nieuw Arch. Wisk. 3, Vol. 17, (1969), pp. 87–108.
- [56] M. Nisse: “Structure affine des infranilvariétés et infrasolvariétés”, C. R. Acad. Sci. Paris, Vol. 310, (1990), pp. 667–670. Zbl0697.57021
- [57] J.M. Osborn: “Novikov algebras”, Nova J. Algebra Geom., Vol. 1(1), (1992), pp. 1–13. Zbl0876.17005
- [58] J.M. Osborn: “Infinite dimensional Novikov algebras of characteristic 0”, J. Algebra, Vol. 167(1), (1994), pp. 146–167. http://dx.doi.org/10.1006/jabr.1994.1181
- [59] B.E. Reed: “Representations of solvable Lie algebras”, Michigan Math. J., Vol. 16, (1969), pp. 227–233. http://dx.doi.org/10.1307/mmj/1029000266
- [60] M. Rosellen: “A course in vertex algebra”, Preprint, (2005).
- [61] J. Scheuneman: “Affine structures on three-step nilpotent Lie algebras”, Proc. Amer. Math. Soc., Vol. 46, (1974), pp. 451–454. http://dx.doi.org/10.2307/2039945 Zbl0291.22010
- [62] I. Schur: “Zur Theorie vertauschbarer Matrizen”, J. Reine Angew. Mathematik, Vol. 130, (1905), pp. 66–76. http://dx.doi.org/10.1515/crll.1905.130.66
- [63] D. Segal: “The structure of complete left-symmetric algebras”, Math. Ann., Vol. 293, (1992), pp. 569–578. http://dx.doi.org/10.1007/BF01444735 Zbl0766.17005
- [64] J. Smillie: “An obstruction to the existence of affine structures”, Invent. Math., Vol. 64, (1981), pp. 411–415. http://dx.doi.org/10.1007/BF01389273 Zbl0485.57015
- [65] W.P. Thurston: Three-dimensional Geometry and Topology, Vol. 1, Princeton Mathematical Series, Vol. 35, Princeton University Press, 1997. Zbl0873.57001
- [66] E.B. Vinberg: “Convex homogeneous cones”, Transl. Moscow Math. Soc., Vol. 12, (1963), pp. 340–403. Zbl0138.43301
- [67] E. Zelmanov: “On a class of local translation invariant Lie algebras”, Soviet Math. Dokl., Vol. 35, (1987), pp. 216–218.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.