Left-symmetric algebras, or pre-Lie algebras in geometry and physics

Dietrich Burde

Open Mathematics (2006)

  • Volume: 4, Issue: 3, page 323-357
  • ISSN: 2391-5455

Abstract

top
In this survey article we discuss the origin, theory and applications of left-symmetric algebras (LSAs in short) in geometry in physics. Recently Connes, Kreimer and Kontsevich have introduced LSAs in mathematical physics (QFT and renormalization theory), where the name pre-Lie algebras is used quite often. Already Cayley wrote about such algebras more than hundred years ago. Indeed, LSAs arise in many different areas of mathematics and physics. We attempt to give a survey of the fields where LSAs play an important role. Furthermore we study the algebraic theory of LSAs such as structure theory, radical theory, cohomology theory and the classification of simple LSAs. We also discuss applications to faithful Lie algebra representations.

How to cite

top

Dietrich Burde. "Left-symmetric algebras, or pre-Lie algebras in geometry and physics." Open Mathematics 4.3 (2006): 323-357. <http://eudml.org/doc/269024>.

@article{DietrichBurde2006,
abstract = {In this survey article we discuss the origin, theory and applications of left-symmetric algebras (LSAs in short) in geometry in physics. Recently Connes, Kreimer and Kontsevich have introduced LSAs in mathematical physics (QFT and renormalization theory), where the name pre-Lie algebras is used quite often. Already Cayley wrote about such algebras more than hundred years ago. Indeed, LSAs arise in many different areas of mathematics and physics. We attempt to give a survey of the fields where LSAs play an important role. Furthermore we study the algebraic theory of LSAs such as structure theory, radical theory, cohomology theory and the classification of simple LSAs. We also discuss applications to faithful Lie algebra representations.},
author = {Dietrich Burde},
journal = {Open Mathematics},
keywords = {17-02; 22-02 53-02},
language = {eng},
number = {3},
pages = {323-357},
title = {Left-symmetric algebras, or pre-Lie algebras in geometry and physics},
url = {http://eudml.org/doc/269024},
volume = {4},
year = {2006},
}

TY - JOUR
AU - Dietrich Burde
TI - Left-symmetric algebras, or pre-Lie algebras in geometry and physics
JO - Open Mathematics
PY - 2006
VL - 4
IS - 3
SP - 323
EP - 357
AB - In this survey article we discuss the origin, theory and applications of left-symmetric algebras (LSAs in short) in geometry in physics. Recently Connes, Kreimer and Kontsevich have introduced LSAs in mathematical physics (QFT and renormalization theory), where the name pre-Lie algebras is used quite often. Already Cayley wrote about such algebras more than hundred years ago. Indeed, LSAs arise in many different areas of mathematics and physics. We attempt to give a survey of the fields where LSAs play an important role. Furthermore we study the algebraic theory of LSAs such as structure theory, radical theory, cohomology theory and the classification of simple LSAs. We also discuss applications to faithful Lie algebra representations.
LA - eng
KW - 17-02; 22-02 53-02
UR - http://eudml.org/doc/269024
ER -

References

top
  1. [1] A. d’Andrea and V.G. Kac: “Structure theory of finite conformal algebras”, Selecta Math., Vol. 4, (1998), pp. 377–418. http://dx.doi.org/10.1007/s000290050036 Zbl0918.17019
  2. [2] L. Auslander: “Simply transitive groups of affine motions”, Am. J. Math., Vol. 99, (1977), pp. 809–826. Zbl0357.22006
  3. [3] C. Bai and D. Meng: “A Lie algebraic approach to Novikov algebras”, J. Geom. Phys. Vol. 45(1–2), (2003), pp. 218–230. http://dx.doi.org/10.1016/S0393-0440(02)00150-X Zbl1033.17001
  4. [4] A.A. Balinskii and S.P. Novikov: “Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras”, Sov. Math. Dokl., Vol. 32, (1985), pp. 228–231. Zbl0606.58018
  5. [5] B. Bakalov and V. Kac: “Field algebras”, Int. Math. Res. Not., Vol. 3, 2003, pp. 123–159. http://dx.doi.org/10.1155/S1073792803204232 Zbl1032.17045
  6. [6] O. Baues: “Left-symmetric algebras for gl(n)”, Trans. Amer. Math. Soc., Vol. 351(7), (1999), pp. 2979–2996. http://dx.doi.org/10.1090/S0002-9947-99-02315-6 Zbl1113.17301
  7. [7] Y. Benoist: “Une nilvariété non affine”, J. Differential Geom., Vol. 41, (1995), pp. 21–52. 
  8. [8] J.P. Benzécri: Variétés localement affines, Thèse, Princeton Univ., Princeton, N.J., 1955. 
  9. [9] R.E. Borcherds: “Vertex algebras, Kac-Moody algebras, and the Monster”, Proc. Nat. Acad. Sci., Vol. 83(10), (1986), pp. 3068–3071. http://dx.doi.org/10.1073/pnas.83.10.3068 Zbl0613.17012
  10. [10] N. Boyom: “Sur les structures affines homotopes à zéro des groupes de Lie”, J. Diff. Geom., Vol. 31, (1990), pp. 859–911. Zbl0708.53042
  11. [11] D. Burde: “Affine structures on nilmanifolds”, Int. J. Math., Vol. 7, (1996), pp. 599–616. http://dx.doi.org/10.1142/S0129167X96000323 Zbl0868.57034
  12. [12] D. Burde: “Simple left-symmetric algebras with solvable Lie algebra”, Manuscripta Math., Vol. 95, (1998), pp. 397–411. http://dx.doi.org/10.1007/s002290050037 Zbl0907.17008
  13. [13] D. Burde and K. Dekimpe: “Novikov structures on solvable Lie algebras”, J. Geom. Phys., (2006), to appear. Zbl1095.17004
  14. [14] D. Burde and F. Grunewald: “Modules for certain Lie algebras of maximal class”, J. Pure Appl. Algebra, Vol. 99, (1995), pp. 239–254. http://dx.doi.org/10.1016/0022-4049(94)00002-Z Zbl0845.17011
  15. [15] D. Burde: “Affine cohomology classes for filiform Lie algebras”, Contemporary Math., Vol. 262, (2000), pp. 159–170. Zbl0967.17017
  16. [16] D. Burde: Left-invariant affine structures on nilpotent Lie groups, Habilitation thesis, Düsseldorf, 1999. 
  17. [17] D. Burde: “A refinement of Ado’s Theorem”, Archiv Math., Vol. 70, (1998), pp. 118–127. http://dx.doi.org/10.1007/s000130050173 Zbl0904.17006
  18. [18] D. Burde: “Estimates on binomial sums of partition functions”, Manuscripta Math., Vol. 103, (2000), pp. 435–446. http://dx.doi.org/10.1007/s002290070002 Zbl0983.11059
  19. [19] D. Burde: “Left-invariant affine structures on reductive Lie groups”, J. Algebra, Vol. 181, (1996), pp. 884–902. http://dx.doi.org/10.1006/jabr.1996.0151 
  20. [20] A. Cayley: On the Theory of Analytic Forms Called Trees, Collected Mathematical Papers of Arthur Cayley, Vol. 3, Cambridge Univ. Press. Cambridge, 1890, 1890, pp. 242–246. 
  21. [21] Y. Carriére, F. Dal’bo and G. Meigniez: “Inexistence de structures affines sur les fibres de Seifert”, Math. Ann., Vol. 296, (1993), pp. 743–753. http://dx.doi.org/10.1007/BF01445134 
  22. [22] K.S. Chang, H. Kim and H. Lee: “On radicals of left-symmetric algebra”, Commun. Algebra, Vol. 27(7), (1999), pp. 3161–3175. Zbl0932.17002
  23. [23] K.S. Chang, H. Kim and H. Lee: “Radicals of a left-symmetric algebra on a nilpotent Lie group”, Bull. Korean Math. Soc. Vol. 41(2), (2004), pp. 359–369. http://dx.doi.org/10.4134/BKMS.2004.41.2.359 Zbl1143.17300
  24. [24] F. Chapoton and M. Livernet: “Pre-Lie algebras and the rooted trees operad”, Intern. Math. Research Notices, Vol. 8, (2001), pp. 395–408. http://dx.doi.org/10.1155/S1073792801000198 Zbl1053.17001
  25. [25] A. Connes and D. Kreimer: “Hopf algebras, renormalization and noncommutative geometry”, Comm. Math. Phys., Vol. 199(1), (1998), pp. 203–242. http://dx.doi.org/10.1007/s002200050499 Zbl0932.16038
  26. [26] K. Dekimpe and M. Hartl: “Affine structures on 4-step nilpotent Lie algebras” J. Pure Appl. Math., Vol. 129, (1998), pp. 123–134. 
  27. [27] K. Dekimpe and W. Malfait: “Affine structures on a class of virtually nilpotent groups”, Topology Appl., Vol. 73, (1996), pp. 97–119. http://dx.doi.org/10.1016/0166-8641(96)00069-7 Zbl0878.20023
  28. [28] J. Dixmier and W.G. Lister: “Derivations of nilpotent Lie algebras”, Proc. Amer. Math. Soc., Vol. 8, (1957), pp. 155–158. http://dx.doi.org/10.2307/2032832 Zbl0079.04802
  29. [29] J. Dorfmeister: “Quasi-clans”, Abh. Math. Semin. Univ. Hamburg, Vol. 50, (1980), pp. 178–187. http://dx.doi.org/10.1007/BF02941427 
  30. [30] A. Dzhumaldil’daev and C. Löfwall: “Trees, free right-symmetric algebras, free Novikov algebras and identities”, Homology Homotopy Appl., Vol. 4(2), (2002), pp. 165–190. Zbl1029.17001
  31. [31] A. Dzhumaldil’daev: “N-commutators”, Comment. Math. Helv., Vol. 79(3), (2004), pp. 516–553. Zbl1055.17011
  32. [32] A. Dzhumaldil’daev: “Cohomologies and deformations of right-symmetric algebras”, J. Math. Sci., Vol. 93(6), (1999), pp. 836–876. http://dx.doi.org/10.1007/BF02366344 Zbl0938.17002
  33. [33] I.B. Frenkel, Y. Huang and J. Lepowsky: “On axiomatic approaches to vertex operator algebras and modules”, Mem. Amer. Math. Soc., Vol. 104(494), (1993), pp. 1–64. Zbl0789.17022
  34. [34] I.B. Frenkel, J. Lepowsky and A. Meurman: Vertex operator algebras and the Monster. Pure and Applied Mathematics, Vol. 134, Academic Press, Boston, MA, 1988, pp. 1–508. Zbl0674.17001
  35. [35] M. Gerstenhaber: “The cohomology structure of an associative ring”, Ann. Math., Vol. 78, (1963), pp. 267–288. http://dx.doi.org/10.2307/1970343 Zbl0131.27302
  36. [36] V. Gichev: “On complete affine structures in Lie groups”, Preprint ArXiv. 
  37. [37] W.A. de Graaf: “Constructing faithful matrix representations of Lie algebras”, In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, ACM, New York, pp. 54–59 (electronic). Zbl0957.17001
  38. [38] J. Helmstetter: “Radical d’une algèbre symétrique a gauche”, Ann. Inst. Fourier, Vol. 29, (1979), pp. 17–35. Zbl0403.16020
  39. [39] N. Jacobson: “A note on automorphisms and derivations of Lie algebras”, Proc. Amer. Math. Soc., Vol. 6, (1955), pp. 281–283. http://dx.doi.org/10.2307/2032356 Zbl0064.27002
  40. [40] N. Jacobson: “Schur’s theorem on commutative matrices”, Bull. Amer. Math. Soc., Vol. 50, (1944), pp. 431–436. http://dx.doi.org/10.1090/S0002-9904-1944-08169-X 
  41. [41] V. Kac: Vertex algebras for beginners, University Lecture Series, Vol. 10, American Mathematical Society, Providence, 1998, pp. 1–201. Zbl0924.17023
  42. [42] H. Kim: “Complete left-invariant affine structures on nilpotent Lie groups”, J. Diff. Geom., Vol. 24, (1986), pp. 373–394. Zbl0591.53045
  43. [43] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry, Vols. I and II, Wiley-Interscience Publishers, New York and London, 1969. Zbl0175.48504
  44. [44] J.-L. Koszul: “Domaines bornés homogènes et orbites de groupes de transformations affines”, Bull. Soc. Math. France, Vol. 89, (1961), pp. 515–533 Zbl0144.34002
  45. [45] D. Kreimer: “New mathematical structures in renormalizable quantum field theories”, Ann. Phys., Vol. 303(1), (2003), pp. 179–202. http://dx.doi.org/10.1016/S0003-4916(02)00023-4 Zbl1011.81045
  46. [46] D. Kreimer: “Structures in Feynman Graphs-Hopf Algebras and Symmetries”, Proc. Symp. Pure Math., Vol. 73, (2005), pp. 43–78. Zbl1088.81077
  47. [47] N.H. Kuiper: Sur les surfaces localement affines, Colloque de Géometrie différentielle, Strasbourg, 1953, pp. 79–86. 
  48. [48] J. Lepowsky and H. Li: “Introduction to Vertex Operator Algebras and Their Representations”, Progr. Math. Vol. 227, (2003), pp. 1–316. 
  49. [49] J.P. May: “Geometry of Iterated Moduli Spaces”, Lecture Notes in Math., Vol. 271, 1972. 
  50. [50] J. Milnor: “On fundamental groups of complete affinely flat manifolds”, Advances Math., Vol. 25, (1977), pp. 178–187. http://dx.doi.org/10.1016/0001-8708(77)90004-4 
  51. [51] A. Mizuhara: “On the radical of a left-symmetric algebra”, Tensor N. S., Vol. 36, (1982), pp. 300–302. Zbl0497.17006
  52. [52] A. Mizuhara: “On the radical of a left-symmetric algebra II”, Tensor N. S., Vol. 40, (1983), pp. 221–232. Zbl0539.17002
  53. [53] T. Nagano and K. Yagi: “The affine structures on the real two torus”, Osaka J. Math., Vol. 11, (1974), pp. 181–210. Zbl0285.53030
  54. [54] A. Nijenhuis: “The graded Lie algebras of an algebra”, Indag. Math., Vol. 29, (1967), pp. 475–486. Zbl0153.36201
  55. [55] A. Nijenhuis: “On a class of common properties of some different types of algebras, II”, Nieuw Arch. Wisk. 3, Vol. 17, (1969), pp. 87–108. 
  56. [56] M. Nisse: “Structure affine des infranilvariétés et infrasolvariétés”, C. R. Acad. Sci. Paris, Vol. 310, (1990), pp. 667–670. Zbl0697.57021
  57. [57] J.M. Osborn: “Novikov algebras”, Nova J. Algebra Geom., Vol. 1(1), (1992), pp. 1–13. Zbl0876.17005
  58. [58] J.M. Osborn: “Infinite dimensional Novikov algebras of characteristic 0”, J. Algebra, Vol. 167(1), (1994), pp. 146–167. http://dx.doi.org/10.1006/jabr.1994.1181 
  59. [59] B.E. Reed: “Representations of solvable Lie algebras”, Michigan Math. J., Vol. 16, (1969), pp. 227–233. http://dx.doi.org/10.1307/mmj/1029000266 
  60. [60] M. Rosellen: “A course in vertex algebra”, Preprint, (2005). 
  61. [61] J. Scheuneman: “Affine structures on three-step nilpotent Lie algebras”, Proc. Amer. Math. Soc., Vol. 46, (1974), pp. 451–454. http://dx.doi.org/10.2307/2039945 Zbl0291.22010
  62. [62] I. Schur: “Zur Theorie vertauschbarer Matrizen”, J. Reine Angew. Mathematik, Vol. 130, (1905), pp. 66–76. http://dx.doi.org/10.1515/crll.1905.130.66 
  63. [63] D. Segal: “The structure of complete left-symmetric algebras”, Math. Ann., Vol. 293, (1992), pp. 569–578. http://dx.doi.org/10.1007/BF01444735 Zbl0766.17005
  64. [64] J. Smillie: “An obstruction to the existence of affine structures”, Invent. Math., Vol. 64, (1981), pp. 411–415. http://dx.doi.org/10.1007/BF01389273 Zbl0485.57015
  65. [65] W.P. Thurston: Three-dimensional Geometry and Topology, Vol. 1, Princeton Mathematical Series, Vol. 35, Princeton University Press, 1997. Zbl0873.57001
  66. [66] E.B. Vinberg: “Convex homogeneous cones”, Transl. Moscow Math. Soc., Vol. 12, (1963), pp. 340–403. Zbl0138.43301
  67. [67] E. Zelmanov: “On a class of local translation invariant Lie algebras”, Soviet Math. Dokl., Vol. 35, (1987), pp. 216–218. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.