On Dye's condition in nilpotent groups of class 2
Ernest Płonka (1974)
Colloquium Mathematicae
Similarity:
Ernest Płonka (1974)
Colloquium Mathematicae
Similarity:
J.K. Truss, E.K. Burke (1995)
Forum mathematicum
Similarity:
Hermann Heineken (1990)
Mathematische Annalen
Similarity:
Peter Hilton, Robert Militello (1992)
Publicacions Matemàtiques
Similarity:
We identify two generalizations of the notion of a finitely generated nilpotent. Thus a nilpotent group G is fgp if Gp is fg as p-local group for each p; and G is fg-like if there exists a fg nilpotent group H such that Gp ≅ Hp for all p. The we have proper set-inclusions: {fg} ⊂ {fg-like} ⊂ {fgp}. We examine the extent to which fg-like nilpotent groups satisfy the axioms for...
D. Segal, F.J. Grunewald, L.S. Sterling (1982)
Mathematische Zeitschrift
Similarity:
Ian Hawthorn (2018)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
In an earlier paper distributors were defined as a measure of how close an arbitrary function between groups is to being a homomorphism. Distributors generalize commutators, hence we can use them to try to generalize anything defined in terms of commutators. In this paper we use this to define a generalization of nilpotent groups and explore its basic properties.
Srinivasan, S. (1987)
International Journal of Mathematics and Mathematical Sciences
Similarity:
John S. Rose (1968)
Mathematische Zeitschrift
Similarity:
Adolfo Ballester-Bolinches, James C. Beidleman, John Cossey, Hermann Heineken, María Carmen Pedraza-Aguilera (2006)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Elisabeth A. Pennington (1973)
Mathematische Zeitschrift
Similarity:
Z. Janko, M.F. Newman (1963)
Mathematische Zeitschrift
Similarity:
Artemovych, O. (2002)
Serdica Mathematical Journal
Similarity:
We characterize the groups which do not have non-trivial perfect sections and such that any strictly descending chain of non-“nilpotent-by-finite” subgroups is finite.