Diagonal swap procedures and characterizations of 2D-Delaunay triangulations
C. Cherfils, F. Hermeline (1990)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
C. Cherfils, F. Hermeline (1990)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
G. Farin, P. Kashyap (1992)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
Dawson, Robert J. MacG., Doyle, Blair (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
B. Hamann (1992)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
A. M. D'Azevedo Breda, Patrícia S. Ribeiro, Altino F. Santos (2010)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Dawson, Robert J. MacG., Doyle, Blair (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Shen, Yujin, Tolosa, Juan (2008)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Čerin, Z. (1997)
Mathematica Pannonica
Similarity:
L. R. Scott, M. Vogelius (1985)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
Mark Keil, J, Vassilev, Tzvetalin (2010)
Serdica Journal of Computing
Similarity:
* A preliminary version of this paper was presented at XI Encuentros de Geometr´ia Computacional, Santander, Spain, June 2005. We consider sets of points in the two-dimensional Euclidean plane. For a planar point set in general position, i.e. no three points collinear, a triangulation is a maximal set of non-intersecting straight line segments with vertices in the given points. These segments, called edges, subdivide the convex hull of the set into triangular regions called...