Displaying similar documents to “An adaptive finite element method for solving a double well problem describing crystalline microstructure”

An adaptive finite element method for solving a double well problem describing crystalline microstructure

Andreas Prohl (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The minimization of nonconvex functionals naturally arises in materials sciences where deformation gradients in certain alloys exhibit microstructures. For example, minimizing sequences of the nonconvex Ericksen-James energy can be associated with deformations in martensitic materials that are observed in experiments[2,3]. — From the numerical point of view, classical conforming and nonconforming finite element discretizations have been observed to give minimizers with their quality...

Numerical analysis of a relaxed variational model of hysteresis in two-phase solids

Carsten Carstensen, Petr Plecháč (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This paper presents the numerical analysis for a variational formulation of rate-independent phase transformations in elastic solids due to Mielke et al. The new model itself suggests an implicit time-discretization which is combined with the finite element method in space. A priori error estimates are established for the quasioptimal spatial approximation of the stress field within one time-step. A posteriori error estimates motivate an adaptive mesh-refining algorithm...

On the numerical modeling of deformations of pressurized martensitic thin films

Pavel Bělík, Timothy Brule, Mitchell Luskin (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We propose, analyze, and compare several numerical methods for the computation of the deformation of a pressurized martensitic thin film. Numerical results have been obtained for the hysteresis of the deformation as the film transforms reversibly from austenite to martensite.

Numerical approaches to rate-independent processes and applications in inelasticity

Alexander Mielke, Tomáš Roubíček (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

A conceptual numerical strategy for rate-independent processes in the energetic formulation is proposed and its convergence is proved under various rather mild data qualifications. The novelty is that we obtain convergence of subsequences of space-time discretizations even in case where the limit problem does not have a unique solution and we need no additional assumptions on higher regularity of the limit solution. The variety of general perspectives thus obtained is illustrated...