Mixed finite element approximation of an MHD problem involving conducting and insulating regions : the 2D case
Jean Luc Guermond; Peter D. Minev
- Volume: 36, Issue: 3, page 517-536
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topGuermond, Jean Luc, and Minev, Peter D.. "Mixed finite element approximation of an MHD problem involving conducting and insulating regions : the 2D case." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 36.3 (2002): 517-536. <http://eudml.org/doc/245536>.
@article{Guermond2002,
abstract = {We show that the Maxwell equations in the low frequency limit, in a domain composed of insulating and conducting regions, has a saddle point structure, where the electric field in the insulating region is the Lagrange multiplier that enforces the curl-free constraint on the magnetic field. We propose a mixed finite element technique for solving this problem, and we show that, under mild regularity assumption on the data, Lagrange finite elements can be used as an alternative to edge elements.},
author = {Guermond, Jean Luc, Minev, Peter D.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element method; magnetohydrodynamics},
language = {eng},
number = {3},
pages = {517-536},
publisher = {EDP-Sciences},
title = {Mixed finite element approximation of an MHD problem involving conducting and insulating regions : the 2D case},
url = {http://eudml.org/doc/245536},
volume = {36},
year = {2002},
}
TY - JOUR
AU - Guermond, Jean Luc
AU - Minev, Peter D.
TI - Mixed finite element approximation of an MHD problem involving conducting and insulating regions : the 2D case
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 3
SP - 517
EP - 536
AB - We show that the Maxwell equations in the low frequency limit, in a domain composed of insulating and conducting regions, has a saddle point structure, where the electric field in the insulating region is the Lagrange multiplier that enforces the curl-free constraint on the magnetic field. We propose a mixed finite element technique for solving this problem, and we show that, under mild regularity assumption on the data, Lagrange finite elements can be used as an alternative to edge elements.
LA - eng
KW - finite element method; magnetohydrodynamics
UR - http://eudml.org/doc/245536
ER -
References
top- [1] T. Amari, J.F. Luciani and P. Joly, A preconditioned semi-implicit method for magnetohydrodynamics equation. SIAM J. Sci. Comput. 21 (1999) 970–986. Zbl0964.76057
- [2] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Verlag, New York, Springer Ser. Comput. Math. 15 (1991). Zbl0788.73002MR1115205
- [3] A. Bossavit, Electromagnétisme en vue de la modélisation. SMAI/Springer-Verlag, Paris, Math. Appl. 14 (1993). See also Computational Electromagnetism, Variational Formulations, Complementary, Edge Elements, Academic Press (1998). MR1488417
- [4] H. Brezis, Analyse fonctionnelle. Masson, Paris (1991). Zbl0511.46001MR697382
- [5] P. Clément, Approximation by finite element functions using local regularization. Anal. Numér. 9 (1975) 77–84. Zbl0368.65008
- [6] M. Costabel, A coercive bilinear form for Maxwell’s equations. J. Math. Anal. Appl. 157 (1991) 527–541. Zbl0738.35095
- [7] M.L. Dudley and R.W. James, time-dependent kinematic dynamos with stationary flows. Proc. Roy. Soc. London A425 (1989) 407–429.
- [8] L. Demkowicz and L. Vardapetyan, Modeling of electromagnetic absorption/scattering problems using -adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 152 (1998) 103–124. Symposium on Advances in Computational Mechanics, Vol. 5 (Austin, TX, 1997). Zbl0994.78011
- [9] J.-F. Gerbeau, A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87 (2000) 83–111. Zbl0988.76050
- [10] J.-L. Guermond, J. Léorat and C. Nore, Numerical simulations of 2D MHD problems using Lagrange finite elements (in preparation 2001).
- [11] J.-L. Guermond and P.D. Minev, Mixed finite element approximation of an MHD problem involving conducting and insulating regions: the 3D case (submitted 2002). Zbl1037.76034MR2009590
- [12] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations. Springer–Verlag, Berlin, Springer Ser. Comput. Math. 5 (1986). Zbl0585.65077
- [13] J. Léorat, Numerical simulations of cylindrical dynamos: scope and method. In 7th beer-Sheva Onternatal seminar, Vol. 162, pp. 282–292. AIAA Progress in Astronautics and aeronautic series, 1994.
- [14] J. Léorat, Linear dynamo simulations with time dependent helical flows. Magnetohydrodynamics 31 (1995) 367–373. Zbl0875.76713
- [15] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968). Zbl0165.10801MR247243
- [16] H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge (1978).
- [17] A.J. Meir and P.G. Schmidt, Analysis and numerical approximation of a stationary MHD flow problem with non-ideal boundary. SIAM J. Numer. Anal. 36 (1999) 1304–1332. Zbl0948.76091
- [18] J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). MR227584
- [19] J.-C. Nédélec, A new family of mixed finite elements in . Numer. Math. 50 (1986) 57–81. Zbl0625.65107
- [20] R.L. Parker, Reconnexion of lines of force in rotating spheres and cylinders. Proc. Roy. Soc. 291 (1966) 60–72.
- [21] N. Ben Salah, A. Soulaimani and W.G. Habashi, A finite element method for magnetohydrodynamics. Comput. Methods Appl. Mech. Engrg. 190 (2001) 5867–5892. Zbl1044.76030
- [22] N. Ben Salah, A. Soulaimani, W.G. Habashi and M. Fortin, A conservative stabilized finite element method for magnetohydrodynamics equations. Internat. J. Numer. Methods Fluids 29 (1999) 535–554. Zbl0938.76049
- [23] R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equation. RAIRO Anal. Numér. 18 (1984) 175–182. Zbl0557.76037
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.