Displaying similar documents to “Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows”

Finite-element discretizations of a two-dimensional grade-two fluid model

Vivette Girault, Larkin Ridgway Scott (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We propose and analyze several finite-element schemes for solving a grade-two fluid model, with a tangential boundary condition, in a two-dimensional polygon. The exact problem is split into a generalized Stokes problem and a transport equation, in such a way that it always has a solution without restriction on the shape of the domain and on the size of the data. The first scheme uses divergence-free discrete velocities and a centered discretization of the transport term, whereas the...

The Mortar finite element method for Bingham fluids

Patrick Hild (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This paper deals with the flow problem of a viscous plastic fluid in a cylindrical pipe. In order to approximate this problem governed by a variational inequality, we apply the nonconforming mortar finite element method. By using appropriate techniques, we are able to prove the convergence of the method and to obtain the same convergence rate as in the conforming case.

Finite element analysis of a simplified stochastic Hookean dumbbells model arising from viscoelastic flows

Andrea Bonito, Philippe Clément, Marco Picasso (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

A simplified stochastic Hookean dumbbells model arising from viscoelastic flows is considered, the convective terms being disregarded. A finite element discretization in space is proposed. Existence of the numerical solution is proved for small data, so as error estimates, using an implicit function theorem and regularity results obtained in [Bonito (2006) 381–398] for the solution of the continuous problem. error estimates are also derived. Numerical results with...

Finite element discretization of Darcy's equations with pressure dependent porosity

Vivette Girault, François Murat, Abner Salgado (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We consider the flow of a viscous incompressible fluid through a rigid homogeneous porous medium. The permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a finite element discretization of this problem and, in the case where the dependence on the pressure is bounded from above and below, we prove its convergence to the solution and propose an algorithm to solve the discrete system. In the case where the dependence on the pressure is exponential,...

A posteriori error estimates for the 3 D stabilized Mortar finite element method applied to the Laplace equation

Zakaria Belhachmi (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider a non-conforming stabilized domain decomposition technique for the discretization of the three-dimensional Laplace equation. The aim is to extend the numerical analysis of residual error indicators to this model problem. Two formulations of the problem are considered and the error estimators are studied for both. In the first one, the error estimator provides upper and lower bounds for the energy norm of the mortar finite element solution whereas in the second case, it also...

A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity

Tomás P. Barrios, Gabriel N. Gatica, María González, Norbert Heuer (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper we develop a residual based a posteriori error analysis for an augmented mixed finite element method applied to the problem of linear elasticity in the plane. More precisely, we derive a reliable and efficient a posteriori error estimator for the case of pure Dirichlet boundary conditions. In addition, several numerical experiments confirming the theoretical properties of the estimator, and illustrating the capability of the corresponding adaptive algorithm to localize...

Mixed discontinuous Galerkin approximation of the Maxwell operator : the indefinite case

Paul Houston, Ilaria Perugia, Anna Schneebeli, Dominik Schötzau (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We present and analyze an interior penalty method for the numerical discretization of the indefinite time-harmonic Maxwell equations in mixed form. The method is based on the mixed discretization of the curl-curl operator developed in [Houston et al., J. Sci. Comp. 22 (2005) 325–356] and can be understood as a non-stabilized variant of the approach proposed in [Perugia et al., Comput. Methods Appl. Mech. Engrg. 191 (2002) 4675–4697]. We show the well-posedness of this approach and derive...

Stabilized Galerkin finite element methods for convection dominated and incompressible flow problems

Gert Lube (1994)

Banach Center Publications

Similarity:

In this paper, we analyze a class of stabilized finite element formulations used in computation of (i) second order elliptic boundary value problems (diffusion-convection-reaction model) and (ii) the Navier-Stokes problem (incompressible flow model). These stabilization techniques prevent numerical instabilities that might be generated by dominant convection/reaction terms in (i), (ii) or by inappropriate combinations of velocity/pressure interpolation functions in (ii). Stability and...

Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations

Tie Zhu Zhang, Shu Hua Zhang (2015)

Applications of Mathematics

Similarity:

We consider the original DG method for solving the advection-reaction equations with arbitrary velocity in d space dimensions. For triangulations satisfying the flow condition, we first prove that the optimal convergence rate is of order k + 1 in the L 2 -norm if the method uses polynomials of order k . Then, a very simple derivative recovery formula is given to produce an approximation to the derivative in the flow direction which superconverges with order k + 1 . Further we consider a residual-based...