# Finite element analysis of a simplified stochastic Hookean dumbbells model arising from viscoelastic flows

Andrea Bonito; Philippe Clément; Marco Picasso

ESAIM: Mathematical Modelling and Numerical Analysis (2006)

- Volume: 40, Issue: 4, page 785-814
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topBonito, Andrea, Clément, Philippe, and Picasso, Marco. "Finite element analysis of a simplified stochastic Hookean dumbbells model arising from viscoelastic flows." ESAIM: Mathematical Modelling and Numerical Analysis 40.4 (2006): 785-814. <http://eudml.org/doc/249762>.

@article{Bonito2006,

abstract = {
A simplified stochastic Hookean dumbbells model arising from viscoelastic flows is considered, the convective terms being disregarded.
A finite element discretization in space is proposed.
Existence of the numerical solution is proved for small data, so as a priori error estimates,
using an implicit function theorem and regularity results obtained in [Bonito et al., J. Evol. Equ.6 (2006) 381–398] for the solution of the continuous problem. A posteriori error estimates are also derived.
Numerical results with small time steps and a large number of realizations confirm the
convergence rate with respect to the mesh size.
},

author = {Bonito, Andrea, Clément, Philippe, Picasso, Marco},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {Viscoelastic; Hookean dumbbells; finite elements; stochastic differential equations.; viscoelastic; stochastic differential equations},

language = {eng},

month = {11},

number = {4},

pages = {785-814},

publisher = {EDP Sciences},

title = {Finite element analysis of a simplified stochastic Hookean dumbbells model arising from viscoelastic flows},

url = {http://eudml.org/doc/249762},

volume = {40},

year = {2006},

}

TY - JOUR

AU - Bonito, Andrea

AU - Clément, Philippe

AU - Picasso, Marco

TI - Finite element analysis of a simplified stochastic Hookean dumbbells model arising from viscoelastic flows

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2006/11//

PB - EDP Sciences

VL - 40

IS - 4

SP - 785

EP - 814

AB -
A simplified stochastic Hookean dumbbells model arising from viscoelastic flows is considered, the convective terms being disregarded.
A finite element discretization in space is proposed.
Existence of the numerical solution is proved for small data, so as a priori error estimates,
using an implicit function theorem and regularity results obtained in [Bonito et al., J. Evol. Equ.6 (2006) 381–398] for the solution of the continuous problem. A posteriori error estimates are also derived.
Numerical results with small time steps and a large number of realizations confirm the
convergence rate with respect to the mesh size.

LA - eng

KW - Viscoelastic; Hookean dumbbells; finite elements; stochastic differential equations.; viscoelastic; stochastic differential equations

UR - http://eudml.org/doc/249762

ER -

## References

top- R. Akhavan and Q. Zhou, A comparison of FENE and FENE-P dumbbell and chain models in turbulent flow. J. Non-Newton. Fluid109 (2003) 115–155.
- N. Arada and A. Sequeira, Strong steady solutions for a generalized Oldroyd-B model with shear-dependent viscosity in a bounded domain. Math. Mod. Meth. Appl. S.13 (2003) 1303–1323.
- F.P.T. Baaijens, Mixed finite element methods for viscoelastic flow analysis: a review. J. Non-Newton. Fluid79 (1998) 361–385.
- I. Babuška, R. Durán and R. Rodríguez, Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements. SIAM J. Numer. Anal.29 (1992) 947–964.
- J. Baranger and H. El Amri, Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-newtoniens. RAIRO Modél. Math. Anal. Numér.25 (1991) 931–947.
- J. Baranger and D. Sandri, Finite element approximation of viscoelastic fluid flow: existence of approximate solutions and error bounds. I. Discontinuous constraints. Numer. Math.63 (1992) 13–27.
- J. Baranger and S. Wardi, Numerical analysis of a FEM for a transient viscoelastic flow. Comput. Method. Appl. M.125 (1995) 171–185.
- J.W. Barrett, C. Schwab and E. Süli, Existence of global weak solutions for some polymeric flow models. Math. Mod. Meth. Appl. S.15 (2005) 939–983.
- R. Bird, C. Curtiss, R. Armstrong and O. Hassager, Dynamics of polymeric liquids, Vol. 1 and 2. John Wiley & Sons, New York, 1987.
- A. Bonito, Ph. Clément and M. Picasso, Mathematical and numerical analysis of a simplified time-dependent viscoelastic flow. Numer. Math. (submitted).
- A. Bonito, Ph. Clément and M. Picasso, Mathematical analysis of a simplified Hookean dumbbells model arising from viscoelastic flows. J. Evol. Equ.6 (2006) 381–398.
- A. Bonito, M. Picasso and M. Laso, Numerical simulation of 3d viscoelastic flows with complex free surfaces. J. Comput. Phys.215 (2006) 691–716.
- J. Bonvin and M. Picasso, Variance reduction methods for connffessit-like simulations. J. Non-Newton. Fluid84 (1999) 191–215.
- J. Bonvin and M. Picasso, A finite element/Monte-Carlo method for polymer dilute solutions. Comput. Vis. Sci.4 (2001) 93–98. Second AMIF International Conference (Il Ciocco, 2000).
- J. Bonvin, M. Picasso and R. Stenberg, GLS and EVSS methods for a three-field Stokes problem arising from viscoelastic flows. Comput. Method. Appl. M.190 (2001) 3893–3914.
- B.H.A.A. van den Brule, A.P.G. van Heel and M.A. Hulsen, Simulation of viscoelastic flows using Brownian configuration fields. J. Non-Newton. Fluid70 (1997) 79–101.
- B.H.A.A. van den Brule, A.P.G. van Heel and M.A. Hulsen, On the selection of parameters in the FENE-P model. J. Non-Newton. Fluid75 (1998) 253–271.
- B.H.A.A van den Brule, M.A. Hulsen and H.C. Öttinger, Brownian configuration fields and variance reduced connffessit. J. Non-Newton. Fluid70 (1997) 255–261.
- B. Buffoni and J. Toland, Analytic theory of global bifurcation. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, (2003).
- G. Caloz and J. Rappaz, Numerical analysis for nonlinear and bifurcation problems, in Handbook of numerical analysis, Vol. V, North-Holland, Amsterdam (1997) 487–637.
- C. Chauvière and A. Lozinski, A fast solver for Fokker-Planck equation applied to viscoelastic flows calculations: 2D FENE model. J. Comput. Phys.189 (2003) 607–625.
- P.G. Ciarlet and J.-L. Lions, editors, Handbook of numerical analysis. Vol. II. North-Holland, Amsterdam, (1991). Finite element methods. Part 1.
- P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér.9 (1975) 77–84.
- G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Vol. 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1992).
- W. E, T. Li and P. Zhang, Convergence of a stochastic method for the modeling of polymeric fluids. Acta Math. Sin.18 (2002) 529–536.
- W. E, T. Li and P. Zhang, Well-posedness for the dumbbell model of polymeric fluids. Comm. Math. Phys.248 (2004) 409–427.
- V.J. Ervin and N. Heuer, Approximation of time-dependent, viscoelastic fluid flow: Crank-Nicolson, finite element approximation. Numer. Methods Partial Differ. Equ.20 (2004) 248–283.
- V.J. Ervin and W.W. Miles, Approximation of time-dependent viscoelastic fluid flow: SUPG approximation. SIAM J. Numer. Anal.41 (2003) 457–486 (electronic).
- X. Fan, Molecular models and flow calculation: I. the numerical solutions to multibead-rod models in inhomogeneous flows. Acta Mech. Sin.5 (1989) 49–59.
- X. Fan, Molecular models and flow calculation: II. simulation of steady planar flow. Acta Mech. Sin.5 (1989) 216–226.
- M. Farhloul and A.M. Zine, A new mixed finite element method for viscoelastic fluid flows. Int. J. Pure Appl. Math.7 (2003) 93–115.
- E. Fernández-Cara, F. Guillén and R.R. Ortega, Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind, in Handbook of numerical analysis, Vol. VIII, North-Holland, Amsterdam (2002) 543–661.
- A. Fortin, R. Guénette and R. Pierre, On the discrete EVSS method. Comput. Method. Appl. M.189 (2000) 121–139.
- M. Fortin and R. Pierre, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows. Comput. Method. Appl. M.73 (1989) 341–350.
- Y. Giga, Analyticity of the semigroup generated by the Stokes operator in ${L}_{r}$ spaces. Math. Z.178 (1981) 297–329.
- E. Grande, M. Laso and M. Picasso, Calculation of variable-topology free surface flows using CONNFFESSIT. J. Non-Newton. Fluid113 (2003) 127–145.
- C. Guillopé and J.-C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal-theor.15 (1990) 849–869.
- B. Jourdain, T. Lelièvre and C. Le Bris, Numerical analysis of micro-macro simulations of polymeric fluid flows: a simple case. Math. Mod. Meth. Appl. S.12 (2002) 1205–1243.
- B. Jourdain, C. Le Bris and T. Lelièvre, On a variance reduction technique for micro-macro simulations of polymeric fluids. J. Non-Newton. Fluid122 (2004) 91–106.
- B. Jourdain, T. Lelièvre and C. Le Bris, Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J. Funct. Anal.209 (2004) 162–193.
- B. Jourdain, C. Le Bris, T. Lelièvre and F. Otto, Long-time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. An.181 (2006) 97–148.
- I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York (1991).
- R. Keunings, On the Peterlin approximation for finitely extensible dumbbells. J. Non-Newton. Fluid68 (1997) 85–100.
- R. Keunings, Micro-marco methods for the multi-scale simulation of viscoelastic flow using molecular models of kinetic theory, in Rheology Reviews, D.M. Binding, K. Walters (Eds.), British Society of Rheology (2004) 67–98.
- S. Larsson, V. Thomée and L.B. Wahlbin, Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method. Math. Comp.67 (1998) 45–71.
- M. Laso and H.C. Öttinger, Calculation of viscoelastic flow using molecular models: the connffessit approach. J. Non-Newton. Fluid47 (1993) 1–20.
- M. Laso, H.C. Öttinger and M. Picasso, 2-d time-dependent viscoelastic flow calculations using connffessit. AICHE Journal43 (1997) 877–892.
- C. Le Bris and P.-L. Lions, Renormalized solutions of some transport equations with partially W1,1 velocities and applications. Ann. Mat. Pur. Appl.183 (2004) 97–130.
- T. Lelièvre, Optimal error estimate for the CONNFFESSIT approach in a simple case. Comput. Fluids33 (2004) 815–820.
- T. Li and P. Zhang, Convergence analysis of BCF method for Hookean dumbbell model with finite difference scheme. Multiscale Model. Simul.5 (2006) 205–234.
- T. Li, H. Zhang and P. Zhang, Local existence for the dumbbell model of polymeric fluids. Comm. Partial Diff. Eq.29 (2004) 903–923.
- P.L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows. Chinese Ann. Math. Ser. B21 (2000) 131–146.
- A. Lozinski and R.G. Owens, An energy estimate for the Oldroyd B model: theory and applications. J. Non-Newton. Fluid112 (2003) 161–176.
- A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems. Progress in Nonlinear Differential Equations and their Applications, 16 Birkhäuser Verlag, Basel (1995).
- A. Machmoum and D. Esselaoui, Finite element approximation of viscoelastic fluid flow using characteristics method. Comput. Method. Appl. M.190 (2001) 5603–5618.
- K. Najib and D. Sandri, On a decoupled algorithm for solving a finite element problem for the approximation of viscoelastic fluid flow. Numer. Math.72 (1995) 223–238.
- H.C. Öttinger, Stochastic processes in polymeric fluids. Springer-Verlag, Berlin (1996).
- R.G. Owens and T.N. Phillips, Computational rheology. Imperial College Press, London (2002).
- M. Picasso and J. Rappaz, Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows. ESAIM: M2AN35 (2001) 879–897.
- A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Number 23 in Springer Series in Computational Mathematics. Springer-Verlag (1991).
- M. Renardy, Existence of slow steady flows of viscoelastic fluids of integral type. Z. Angew. Math. Mech.68 (1988) T40–T44.
- M. Renardy, An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM J. Math. Anal.22 (1991) 313–327.
- D. Revuz and M. Yor, Continuous martingales and Brownian motion, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 293 Springer-Verlag, Berlin (1994).
- D. Sandri, Analyse d'une formulation à trois champs du problème de Stokes. RAIRO Modél. Math. Anal. Numér.27 (1993) 817–841.
- D. Sandri, Finite element approximation of viscoelastic fluid flow: existence of approximate solutions and error bounds. Continuous approximation of the stress. SIAM J. Numer. Anal.31 (1994) 362–377.
- P.E. Sobolevskiĭ, Coerciveness inequalities for abstract parabolic equations. Dokl. Akad. Nauk SSSR157 (1964) 52–55.
- R. Verfürth, A posteriori error estimators for the Stokes equations. Numer. Math.55 (1989) 309–325.
- T. von Petersdorff and Ch. Schwab, Numerical solution of parabolic equations in high dimensions. ESAIM: M2AN38 (2004) 93–127.
- H. Zhang and P. Zhang, Local existence for the FENE-Dumbbells model of polymeric liquids. Arch. Ration. Mech. An.181 (2006) 373–400.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.