Displaying similar documents to “Analysis of gradient flow of a regularized Mumford-Shah functional for image segmentation and image inpainting”

Error estimates in the Fast Multipole Method for scattering problems Part 2: Truncation of the Gegenbauer series

Quentin Carayol, Francis Collino (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We perform a complete study of the truncation error of the Gegenbauer series. This series yields an expansion of the Green kernel of the Helmholtz equation, e i | u - v | 4 π i | u - v | , which is the core of the Fast Multipole Method for the integral equations. We consider the truncated series where the summation is performed over the indices L . We prove that if v = | v | is large enough, the truncated series gives rise to an error lower than as soon as satisfies L + 1 2 v + C W 2 3 ( K ( α ) ϵ - δ v γ ) v 1 3 where  is the Lambert function, K ( α ) depends...

Error estimates in the fast multipole method for scattering problems Part 1: Truncation of the Jacobi-Anger series

Quentin Carayol, Francis Collino (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We perform a complete study of the truncation error of the Jacobi-Anger series. This series expands every plane wave e i s ^ · v in terms of spherical harmonics { Y , m ( s ^ ) } | m | . We consider the truncated series where the summation is performed over the ( , m ) 's satisfying | m | L . We prove that if v = | v | is large enough, the truncated series gives rise to an error lower than as soon as satisfies L + 1 2 v + C W 2 3 ( K ϵ - δ v γ ) v 1 3 where is the Lambert function and C , K , δ , γ are pure positive constants. Numerical experiments show that this asymptotic...

Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces

Stefano Lisini (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study existence and approximation of non-negative solutions of partial differential equations of the type 
 t u - div ( A ( ( f ( u ) ) + u V ) ) = 0 in ( 0 , + ) × n , ( 0 . 1 ) where is a symmetric matrix-valued function of the spatial variable satisfying a uniform ellipticity condition, f : [ 0 , + ) [ 0 , + ) is a suitable non decreasing function, V : n is a convex function. Introducing the energy functional φ ( u ) = n F ( u ( x ) ) d x + n V ( x ) u ( x ) d x , where is a convex function linked to by f ( u ) = u F ' ( u ) - F ( u ) , we show that is the “gradient flow” of with respect to the 2-Wasserstein distance between probability measures on the...

Controlled functional differential equations: approximate and exact asymptotic tracking with prescribed transient performance

Eugene P. Ryan, Chris J. Sangwin, Philip Townsend (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

A tracking problem is considered in the context of a class 𝒮 of multi-input, multi-output, nonlinear systems modelled by controlled functional differential equations. The class contains, as a prototype, all finite-dimensional, linear, -input, -output, minimum-phase systems with sign-definite “high-frequency gain". The first control objective is tracking of reference signals by the output of any system in 𝒮 : given λ 0 , construct a feedback strategy which ensures that, for every (assumed...