Displaying similar documents to “The fourth order accuracy decomposition scheme for an evolution problem”

High degree precision decomposition method for the evolution problem with an operator under a split form

Zurab Gegechkori, Jemal Rogava, Mikheil Tsiklauri (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In the present work the symmetrized sequential-parallel decomposition method of the third degree precision for the solution of Cauchy abstract problem with an operator under a split form, is presented. The third degree precision is reached by introducing a complex coefficient with the positive real part. For the considered schema the explicit estimation is obtained.

The fourth order accuracy decomposition scheme for an evolution problem

Zurab Gegechkori, Jemal Rogava, Mikheil Tsiklauri (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In the present work, the symmetrized sequential-parallel decomposition method with the fourth order accuracy for the solution of Cauchy abstract problem with an operator under a split form is presented. The fourth order accuracy is reached by introducing a complex coefficient with the positive real part. For the considered scheme, the explicit a priori estimate is obtained.

Central schemes and contact discontinuities

Alexander Kurganov, Guergana Petrova (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We introduce a family of new second-order Godunov-type central schemes for one-dimensional systems of conservation laws. They are a less dissipative generalization of the central-upwind schemes, proposed in [A. Kurganov , submitted to ], whose construction is based on the maximal one-sided local speeds of propagation. We also present a recipe, which helps to improve the resolution of contact waves. This is achieved by using the , suggested by Nessyahu and Tadmor [ ...