High degree precision decomposition method for the evolution problem with an operator under a split form
Zurab Gegechkori; Jemal Rogava; Mikheil Tsiklauri
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 36, Issue: 4, page 693-704
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topGegechkori, Zurab, Rogava, Jemal, and Tsiklauri, Mikheil. "High degree precision decomposition method for the evolution problem with an operator under a split form." ESAIM: Mathematical Modelling and Numerical Analysis 36.4 (2010): 693-704. <http://eudml.org/doc/194121>.
@article{Gegechkori2010,
abstract = {
In the present work the symmetrized sequential-parallel decomposition method
of the third degree precision for the solution of Cauchy abstract problem
with an operator under a split form, is presented. The third degree
precision is reached by introducing a complex coefficient with the positive
real part. For the considered schema the explicit a priori estimation is
obtained.
},
author = {Gegechkori, Zurab, Rogava, Jemal, Tsiklauri, Mikheil},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Decomposition method; Semigroup; Trotter
formula; Cauchy abstract problem.; decomposition method; Trotter formula; abstract Cauchy problem; parallel computation; error estimate},
language = {eng},
month = {3},
number = {4},
pages = {693-704},
publisher = {EDP Sciences},
title = {High degree precision decomposition method for the evolution problem with an operator under a split form},
url = {http://eudml.org/doc/194121},
volume = {36},
year = {2010},
}
TY - JOUR
AU - Gegechkori, Zurab
AU - Rogava, Jemal
AU - Tsiklauri, Mikheil
TI - High degree precision decomposition method for the evolution problem with an operator under a split form
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 36
IS - 4
SP - 693
EP - 704
AB -
In the present work the symmetrized sequential-parallel decomposition method
of the third degree precision for the solution of Cauchy abstract problem
with an operator under a split form, is presented. The third degree
precision is reached by introducing a complex coefficient with the positive
real part. For the considered schema the explicit a priori estimation is
obtained.
LA - eng
KW - Decomposition method; Semigroup; Trotter
formula; Cauchy abstract problem.; decomposition method; Trotter formula; abstract Cauchy problem; parallel computation; error estimate
UR - http://eudml.org/doc/194121
ER -
References
top- P.R. Chernoff, Note on product formulas for operators semigroups. J. Funct. Anal.2 (1968) 238-242.
- P.R. Chernoff, Semigroup product formulas and addition of unbounded operators. Bull. Amer. Mat. Soc.76 (1970) 395-398.
- B.O. Dia and M. Schatzman, Commutateurs de certains semi-groupes holomorphes et applications aux directions alternées. RAIRO Modél. Math. Anal. Numér.30 (1996) 343-383.
- E.G. Diakonov, Difference schemas with decomposition operator for Multidimensional problems. JNM and MPh2 (1962) 311-319.
- I.V. Fryazinov, Increased precision order economical schemas for the solution of parabolic type multidimensional equations. JNM and MPh9 (1969) 1319-1326.
- Z.G. Gegechkori, J.A. Rogava and M.A Tsiklauri, Sequential-Parallel method of high degree precision for Cauchy abstract problem solution. Tbilisi, in Reports of the Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics14 (1999).
- D.G. Gordeziani, On application of local one dimensional method for solving parabolic type multidimensional problems of 2m-degree. Proc. Acad. Sci. GSSR3 (1965) 535-542.
- D.G. Gordeziani and H.V. Meladze, On modeling multidimensional quasi-linear equation of parabolic type by one-dimensional ones. Proc. Acad. Sci. GSSR60 (1970) 537-540.
- D.G. Gordeziani and H.V. Meladze, On modeling of third boundary value problem for the multidimensional parabolic equations of an arbitrary area by one-dimensional equations. JNM and MPh14 (1974) 246-250.
- D.G. Gordeziani and A.A. Samarskii, Some problems of plates and shells thermo elasticity and method of summary approximation. Complex Anal. Appl. (1978) 173-186.
- N.N. Ianenko, Fractional steps method of solving multidimensional problems of mathematical physics. Nauka, Novosibirsk (1967) 196 p.
- T. Ichinose and S. Takanobu, The norm estimate of the difference between the Kac operator and the Schrodinger semigroup. Nagoya Math. J.149 (1998) 53-81.
- K. Iosida, Functional analysis. Springer-Verlag (1965).
- T. Kato, The theory of perturbations of linear operators. Mir, Moscow (1972) 740 p.
- S.G. Krein, Linear equations in Banach space. Nauka, Moscow (1971), 464 p.
- A.M. Kuzyk and V.L. Makarov, Estimation of exactitude of summarized approximation of a solution of the Cauchy abstract problem. RAN USSR275 (1984) 297-301.
- G.I. Marchuk, Split methods. Nauka, Moscow (1988) 264 p.
- J.A. Rogava, On the error estimation of Trotter type formulas in the case of self-Adjoint operator. Funct. Anal. Appl.27 (1993) 84-86.
- J.A. Rogava, Semi-discrete schemas for operator differential equations. Tbilisi, Georgian Technical University press (1995) 288 p.
- A.A. Samarskii, Difference schemas theory. Nauka, Moscow (1977), 656 p.
- A.A. Samarskii and P.N. Vabishchevich, Additive schemas for mathematical physics problems. Nauka, Moscow (1999).
- R. Temam, Quelques méthodes de décomposition en analyse numérique. Actes Congrés Intern. Math. (1970) 311-319.
- H. Trotter, On the product of semigroup of operators. Proc. Amer. Mat. Soc.10 (1959) 545-551.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.