The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Linear convergence in the approximation of rank-one convex envelopes”

A differential inclusion: the case of an isotropic set

Gisella Croce (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this article we are interested in the following problem: to find a map u : Ω 2 that satisfies D u E a.e. in Ω u ( x ) = ϕ ( x ) x Ω where is an open set of 2 and is a compact isotropic set of 2 × 2 . We will show an existence theorem under suitable hypotheses on .

The steepest descent dynamical system with control. Applications to constrained minimization

Alexandre Cabot (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Let be a real Hilbert space, Φ 1 : H a convex function of class 𝒞 1 that we wish to minimize under the convex constraint . A classical approach consists in following the trajectories of the generalized steepest descent system (  Brézis [CITE]) applied to the non-smooth function  Φ 1 + δ S . Following Antipin [1], it is also possible to use a continuous gradient-projection system. We propose here an alternative method as follows: given a smooth convex function  Φ 0 : H whose critical points coincide with  and...

Geometric constraints on the domain for a class of minimum problems

Graziano Crasta, Annalisa Malusa (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider minimization problems of the form min u ϕ + W 0 1 , 1 ( Ω ) Ω [ f ( D u ( x ) ) - u ( x ) ] d x where Ω N is a bounded convex open set, and the Borel function f : N [ 0 , + ] is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of and the zero level set of , we prove that the viscosity solution of a related Hamilton–Jacobi equation provides a minimizer for the integral functional.

On a Volume Constrained Variational Problem in SBV²(Ω): Part I

Ana Cristina Barroso, José Matias (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider the problem of minimizing the energy E ( u ) : = Ω | u ( x ) | 2 d x + S u Ω 1 + | [ u ] ( x ) | d H N - 1 ( x ) among all functions ∈ ²(Ω) for which two level sets { u = l i } have prescribed Lebesgue measure α i . Subject to this volume constraint the existence of minimizers for (.) is proved and the asymptotic behaviour of the solutions is investigated.