The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Calculation of low Mach number acoustics: a comparison of MPV, EIF and linearized Euler equations”

Calculation of low Mach number acoustics : a comparison of MPV, EIF and linearized Euler equations

Sabine Roller, Thomas Schwartzkopff, Roland Fortenbach, Michael Dumbser, Claus-Dieter Munz (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The calculation of sound generation and propagation in low Mach number flows requires serious reflections on the characteristics of the underlying equations. Although the compressible Euler/Navier-Stokes equations cover all effects, an approximation via standard compressible solvers does not have the ability to represent acoustic waves correctly. Therefore, different methods have been developed to deal with the problem. In this paper, three of them are considered and compared to each...

A generalization of the classical Euler and Korteweg fluids

Kumbakonam R. Rajagopal (2023)

Applications of Mathematics

Similarity:

The aim of this short paper is threefold. First, we develop an implicit generalization of a constitutive relation introduced by Korteweg (1901) that can describe the phenomenon of capillarity. Second, using a sub-class of the constitutive relations (implicit Euler equations), we show that even in that simple situation more than one of the members of the sub-class may be able to describe one or a set of experiments one is interested in describing, and we must determine which amongst these...

Numerical approximation of flow in a symmetric channel with vibrating walls

Sváček, Petr, Horáček, Jaromír

Similarity:

In this paper the numerical solution of two dimensional fluid-structure interaction problem is addressed. The fluid motion is modelled by the incompressible unsteady Navier-Stokes equations. The spatial discretization by stabilized finite element method is used. The motion of the computational domain is treated with the aid of Arbitrary Lagrangian Eulerian (ALE) method. The time-space problem is solved with the aid of multigrid method. The method is applied onto a problem of interaction...

Low Mach number limit of a compressible Euler-Korteweg model

Yajie Wang, Jianwei Yang (2023)

Applications of Mathematics

Similarity:

This article deals with the low Mach number limit of the compressible Euler-Korteweg equations. It is justified rigorously that solutions of the compressible Euler-Korteweg equations converge to those of the incompressible Euler equations as the Mach number tends to zero. Furthermore, the desired convergence rates are also obtained.

The numerical solution of compressible flows in time dependent domains

Kučera, Václav, Česenek, Jan

Similarity:

This work is concerned with the numerical solution of inviscid compressible fluid flow in moving domains. Specifically, we assume that the boundary part of the domain (impermeable walls) are time dependent. We consider the Euler equations, which describe the movement of inviscid compressible fluids. We present two formulations of the Euler equations in the ALE (Arbitrary Lagrangian-Eulerian) form. These two formulations are discretized in space by the discontinuous Galerkin method....