Displaying similar documents to “Numerical computation of solitons for optical systems”

Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics

Othmar Koch, Christof Neuhauser, Mechthild Thalhammer (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this work, the error behaviour of high-order exponential operator splitting methods for the time integration of nonlinear evolutionary Schrödinger equations is investigated. The theoretical analysis utilises the framework of abstract evolution equations on Banach spaces and the formal calculus of Lie derivatives. The general approach is substantiated on the basis of a convergence result for exponential operator splitting methods of (nonstiff) order applied to the multi-configuration...

The continuous Coupled Cluster formulation for the electronic Schrödinger equation

Thorsten Rohwedder (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Nowadays, the Coupled Cluster (CC) method is the probably most widely used high precision method for the solution of the main equation of electronic structure calculation, the . Traditionally, the equations of CC are formulated as a nonlinear approximation of a Galerkin solution of the electronic Schrödinger equation, within a given discrete subspace. Unfortunately, this concept prohibits the direct application of concepts of nonlinear numerical analysis to obtain existence and uniqueness...

A new method to obtain decay rate estimates for dissipative systems

Patrick Martinez (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider the wave equation damped with a boundary nonlinear velocity feedback . Under some geometrical conditions, we prove that the energy of the system decays to zero with an explicit decay rate estimate even if the function has not a polynomial behavior in zero. This work extends some results of Nakao, Haraux, Zuazua and Komornik, who studied the case where the feedback has a polynomial behavior in zero and completes a result of Lasiecka and Tataru. The proof is based on the...