The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A spatially inhomogeneous diffusion problem with strong absorption”

N -widths for singularly perturbed problems

Martin Stynes, R. Bruce Kellogg (2002)

Mathematica Bohemica

Similarity:

Kolmogorov N -widths are an approximation theory concept that, for a given problem, yields information about the optimal rate of convergence attainable by any numerical method applied to that problem. We survey sharp bounds recently obtained for the N -widths of certain singularly perturbed convection-diffusion and reaction-diffusion boundary value problems.

Behaviour of global solutions for a system of reaction-diffusion equations from combustion theory

Salah Badraoui (1999)

Applicationes Mathematicae

Similarity:

We are concerned with the boundedness and large time behaviour of the solution for a system of reaction-diffusion equations modelling complex consecutive reactions on a bounded domain under homogeneous Neumann boundary conditions. Using the techniques of E. Conway, D. Hoff and J. Smoller [3] we also show that the bounded solution converges to a constant function as t → ∞. Finally, we investigate the rate of this convergence.