An explicit computation of “bar” homology groups of a non-unital ring.
Kuku, Aderemi O., Tang, Guoping (2003)
Beiträge zur Algebra und Geometrie
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Kuku, Aderemi O., Tang, Guoping (2003)
Beiträge zur Algebra und Geometrie
Similarity:
Artur Korniłowicz (2009)
Formalized Mathematics
Similarity:
The article starts with definitions of sets of opposite and inverse numbers of a given number membered set. Next, collective addition, subtraction, multiplication and division of two sets are defined. Complex numbers cases and extended real numbers ones are introduced separately and unified for reals. Shortcuts for singletons cases are also defined.
Fuguo Ge (2008)
Formalized Mathematics
Similarity:
In this article, we define the division of the quaternion numbers, we also give the definition of inner products, group, ring of the quaternion numbers, and we prove some of their properties.MML identifier: QUATERN2, version: 7.8.10 4.100.1011
Łojasiewicz, Stanisław, Maszczyk, Tomasz, Rusek, Kamil (2001)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Similarity:
Frédéric Chyzak (2011)
Les cours du CIRM
Similarity:
Kulczycki, Marcin (2002)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Similarity:
Grigorenko, O.V., Roman'kov, V.A. (2007)
Sibirskie Ehlektronnye Matematicheskie Izvestiya [electronic only]
Similarity:
Patil, Dilip P., Tamone, Grazia (2007)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Similarity:
Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon (1996)
Banach Center Publications
Similarity:
Classes dual to Schubert cycles constitute a basis on the cohomology ring of the flag manifold F, self-adjoint up to indexation with respect to the intersection form. Here, we study the bilinear form (X,Y) :=〈X·Y, c(F)〉 where X,Y are cocycles, c(F) is the total Chern class of F and〈,〉 is the intersection form. This form is related to a twisted action of the symmetric group of the cohomology ring, and to the degenerate affine Hecke algebra. We give a distinguished basis for this form,...
Fedorchuk, V.M., Fedorchuk, V.I. (2006)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Similarity: