Displaying similar documents to “Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras”

Lattice effect algebras densely embeddable into complete ones

Zdena Riečanová (2011)

Kybernetika

Similarity:

An effect algebraic partial binary operation ø p l u s defined on the underlying set E uniquely introduces partial order, but not conversely. We show that if on a MacNeille completion E ^ of E there exists an effect algebraic partial binary operation ^ then ^ need not be an extension of . Moreover, for an Archimedean atomic lattice effect algebra E we give a necessary and sufficient condition for that ^ existing on E ^ is an extension of defined on E . Further we show that such ^ extending exists...

Finitely generated almost universal varieties of 0 -lattices

Václav Koubek, Jiří Sichler (2005)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A concrete category 𝕂 is (algebraically) if any category of algebras has a full embedding into 𝕂 , and 𝕂 is if there is a class 𝒞 of 𝕂 -objects such that all non-constant homomorphisms between them form a universal category. The main result of this paper fully characterizes the finitely generated varieties of 0 -lattices which are almost universal.

Decomposition of -group-valued measures

Giuseppina Barbieri, Antonietta Valente, Hans Weber (2012)

Czechoslovak Mathematical Journal

Similarity:

We deal with decomposition theorems for modular measures μ : L G defined on a D-lattice with values in a Dedekind complete -group. Using the celebrated band decomposition theorem of Riesz in Dedekind complete -groups, several decomposition theorems including the Lebesgue decomposition theorem, the Hewitt-Yosida decomposition theorem and the Alexandroff decomposition theorem are derived. Our main result—also based on the band decomposition theorem of Riesz—is the Hammer-Sobczyk decomposition...

On the vanishing of Iwasawa invariants of absolutely abelian p-extensions

Gen Yamamoto (2000)

Acta Arithmetica

Similarity:

1. Introduction. Let p be a prime number and p the ring of p-adic integers. Let k be a finite extension of the rational number field ℚ, k a p -extension of k, k n the nth layer of k / k , and A n the p-Sylow subgroup of the ideal class group of k n . Iwasawa proved the following well-known theorem about the order A n of A n : Theorem A (Iwasawa). Let k / k be a p -extension and A n the p-Sylow subgroup of the ideal class group of k n , where k n is the n th layer of k / k . Then there exist integers λ = λ ( k / k ) 0 , μ = μ ( k / k ) 0 , ν = ν ( k / k ) , and n₀ ≥ 0...