Lattice effect algebras densely embeddable into complete ones

Zdena Riečanová

Kybernetika (2011)

  • Volume: 47, Issue: 1, page 100-109
  • ISSN: 0023-5954

Abstract

top
An effect algebraic partial binary operation ø p l u s defined on the underlying set E uniquely introduces partial order, but not conversely. We show that if on a MacNeille completion E ^ of E there exists an effect algebraic partial binary operation ^ then ^ need not be an extension of . Moreover, for an Archimedean atomic lattice effect algebra E we give a necessary and sufficient condition for that ^ existing on E ^ is an extension of defined on E . Further we show that such ^ extending exists at most one.

How to cite

top

Riečanová, Zdena. "Lattice effect algebras densely embeddable into complete ones." Kybernetika 47.1 (2011): 100-109. <http://eudml.org/doc/197023>.

@article{Riečanová2011,
abstract = {An effect algebraic partial binary operation $øplus$ defined on the underlying set $E$ uniquely introduces partial order, but not conversely. We show that if on a MacNeille completion $\widehat\{E\}$ of $E$ there exists an effect algebraic partial binary operation $\widehat\{\oplus \}$ then $\widehat\{\oplus \}$ need not be an extension of $\{\oplus \}$. Moreover, for an Archimedean atomic lattice effect algebra $E$ we give a necessary and sufficient condition for that $\widehat\{\oplus \}$ existing on $\widehat\{E\}$ is an extension of $\{\oplus \}$ defined on $E$. Further we show that such $\widehat\{\oplus \}$ extending $\{\oplus \}$ exists at most one.},
author = {Riečanová, Zdena},
journal = {Kybernetika},
keywords = {non-classical logics; orthomodular lattices; effect algebras; $MV$-algebras; MacNeille completions; orthomodular lattice; effect algebra; MV-algebra; MacNeille completion},
language = {eng},
number = {1},
pages = {100-109},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Lattice effect algebras densely embeddable into complete ones},
url = {http://eudml.org/doc/197023},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Riečanová, Zdena
TI - Lattice effect algebras densely embeddable into complete ones
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 1
SP - 100
EP - 109
AB - An effect algebraic partial binary operation $øplus$ defined on the underlying set $E$ uniquely introduces partial order, but not conversely. We show that if on a MacNeille completion $\widehat{E}$ of $E$ there exists an effect algebraic partial binary operation $\widehat{\oplus }$ then $\widehat{\oplus }$ need not be an extension of ${\oplus }$. Moreover, for an Archimedean atomic lattice effect algebra $E$ we give a necessary and sufficient condition for that $\widehat{\oplus }$ existing on $\widehat{E}$ is an extension of ${\oplus }$ defined on $E$. Further we show that such $\widehat{\oplus }$ extending ${\oplus }$ exists at most one.
LA - eng
KW - non-classical logics; orthomodular lattices; effect algebras; $MV$-algebras; MacNeille completions; orthomodular lattice; effect algebra; MV-algebra; MacNeille completion
UR - http://eudml.org/doc/197023
ER -

References

top
  1. Chang, C. C., 10.1090/S0002-9947-1958-0094302-9, Trans. Amer. Math. Soc. 88 (1958). 467–490. (1958) Zbl0084.00704MR0094302DOI10.1090/S0002-9947-1958-0094302-9
  2. Chovanec, F., Kôpka, F., 10.1023/A:1003625401906, Internat. J. Theoret. Phys. 39 (2000), 571–583. (2000) MR1790895DOI10.1023/A:1003625401906
  3. Foulis, D. J., Bennett, M. K., Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1325–1346. (1994) MR1304942
  4. Greechie, R. J., Foulis, D. J., Pulmannová, S., 10.1007/BF01108592, Order 12 (1995), 91–106. (1995) MR1336539DOI10.1007/BF01108592
  5. Gudder, S. P., Sharply dominating effect algebras, Tatra Mt. Math. Publ. 15 (1998), 23–30. (1998) Zbl0939.03073MR1655076
  6. Gudder, S. P., 10.1023/A:1026637001130, Internat. J. Theoret. Phys. 37 (1998), 915–923. (1998) Zbl0932.03072MR1624277DOI10.1023/A:1026637001130
  7. Jenča, G., Riečanová, Z., On sharp elements in lattice ordered effect algebras, BUSEFAL 80 (1999), 24–29. (1999) 
  8. Kalina, M., On central atoms of Archimedean atomic lattice effect algebras, Kybernetika 46 (2010), 609–620. (2010) Zbl1214.06002MR2722091
  9. Kalina, M., Olejček, V., Paseka, J., Riečanová, Z., Sharply dominating M V -effect algebras, To appear in: Internat. J. Theoret. Phys. DOI: 10.1007/s10773-010-0338-x. (1007) 
  10. Kalmbach, G., Orthomodular Lattices, Kluwer Academic Publ. Dordrecht 1998. (1998) 
  11. Kôpka, F., 10.1007/BF00676263, Internat. J. Theoret. Phys. 34 (1995), 1525–1531. (1995) MR1353696DOI10.1007/BF00676263
  12. Mosná, K., Atomic lattice effect algebras and their sub-lattice effect algebras, J. Electr. Engrg. 58 (2007), 7/s, 3–6. (2007) 
  13. Paseka, J., Riečanová, Z., 10.1016/j.ins.2008.08.016, Inform. Sci. 179 (2009), 521–528. (2009) Zbl1165.03053MR2490192DOI10.1016/j.ins.2008.08.016
  14. Paseka, J., Riečanová, Z., The inheritance of BDE-property in sharply dominating lattice effect algebras and ( o ) -continuous states, To appear in: Soft Comput. DOI: 10.1007/s00500-010-0561-7. (1007) 
  15. Riečanová, Z., Compatibility and central elements in effect algebras, Tatra Mountains Math. Publ. 16 (1999), 151–158. (1999) MR1725293
  16. Riečanová, Z., 10.1023/A:1003683014627, Internat. J. Theoret. Phys. 39 (2000), 859–869. (2000) MR1792204DOI10.1023/A:1003683014627
  17. Riečanová, Z., 10.1023/A:1026682215765, Internat. J. Theoret. Phys. 38 (1999), 3209–3220. (1999) MR1764459DOI10.1023/A:1026682215765
  18. Riečanová, Z., Archimedean and block-finite lattice effect algebras, Demonstratio Math. 33 (2000), 443–452. (2000) MR1791464
  19. Riečanová, Z., 10.1023/A:1003619806024, Internat. Jour. Theoret. Phys. 39 (2000), 231–237. (2000) MR1762594DOI10.1023/A:1003619806024
  20. Riečanová, Z., Orthogonal sets in effect algebras, Demonstratio Math. 34 (2001), 3, 525–532. (2001) Zbl0989.03071MR1853730
  21. Riečanová, Z., 10.1023/A:1020136531601, Internat. J. Theoret. Phys. 41 (2002), 1511–1524. (2002) Zbl1016.81005MR1932844DOI10.1023/A:1020136531601
  22. Riečanová, Z., Distributive atomic effect algebras, Demonstratio Math. 36 (2003), 247–259. (2003) Zbl1039.03050MR1984337
  23. Riečanová, Z., 10.1023/A:1025775827938, Internat. J. Theoret. Phys. 42 (2003), 1415–1423. (2003) Zbl1034.81003MR2021221DOI10.1023/A:1025775827938
  24. Riečanová, Z., 10.1016/j.ins.2008.07.019, Inform. Sci. 179 (2009) 529–534. (2009) Zbl1166.03038MR2490193DOI10.1016/j.ins.2008.07.019
  25. Riečanová, Z., Archimedean atomic lattice effect algebras with complete lattice of sharp elements, SIGMA 6 (2010), 001, 8 pages. (2010) Zbl1189.03073MR2593381
  26. Schmidt, J., 10.1007/BF01900297, Arch. d. Math. 7 (1956), 241–249. (1956) MR0084484DOI10.1007/BF01900297

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.