The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Rank of tensors of -out-of- k functions: An application in probabilistic inference”

Cycle-free cuts of mutual rank probability relations

Karel De Loof, Bernard De Baets, Hans De Meyer (2014)

Kybernetika

Similarity:

It is well known that the linear extension majority (LEM) relation of a poset of size n 9 can contain cycles. In this paper we are interested in obtaining minimum cutting levels α m such that the crisp relation obtained from the mutual rank probability relation by setting to 0 its elements smaller than or equal to α m , and to 1 its other elements, is free from cycles of length m . In a first part, theoretical upper bounds for α m are derived using known transitivity properties of the mutual rank...

Discriminating between causal structures in Bayesian Networks given partial observations

Philipp Moritz, Jörg Reichardt, Nihat Ay (2014)

Kybernetika

Similarity:

Given a fixed dependency graph G that describes a Bayesian network of binary variables X 1 , , X n , our main result is a tight bound on the mutual information I c ( Y 1 , , Y k ) = j = 1 k H ( Y j ) / c - H ( Y 1 , , Y k ) of an observed subset Y 1 , , Y k of the variables X 1 , , X n . Our bound depends on certain quantities that can be computed from the connective structure of the nodes in G . Thus it allows to discriminate between different dependency graphs for a probability distribution, as we show from numerical experiments.

Estimation and prediction in regression models with random explanatory variables

Nguyen Bac-Van

Similarity:

The regression model X(t),Y(t);t=1,...,n with random explanatory variable X is transformed by prescribing a partition S 1 , . . . , S k of the given domain S of X-values and specifying X ( 1 ) , . . . , X ( n ) S i = X i 1 , . . . , X i α ( i ) , i = 1 , . . . , k . Through the conditioning α ( i ) = a ( i ) , i = 1 , . . . , k , X i 1 , . . . , X i α ( i ) ; i = 1 , . . . , k = x 11 , . . . , x k a ( k ) the initial model with i.i.d. pairs (X(t),Y(t)),t=1,...,n, becomes a conditional fixed-design ( x 11 , . . . , x k a ( k ) ) model Y i j , i = 1 , . . . , k ; j = 1 , . . . , a ( i ) where the response variables Y i j are independent and distributed according to the mixed conditional distribution Q ( · , x i j ) of Y given X at the observed value x i j .Afterwards, we investigate the case ( Q ) E ( Y ' | x ) = i = 1 k b i ( x ) θ i I S i ( x ) , ( Q ) D ( Y | x ) = i = 1 k d i ( x ) Σ i I S i ( x ) which...