The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the asymptotic behavior at infinity of solutions to quasi-linear differential equations”

On the oscillation of a class of linear homogeneous third order differential equations

N. Parhi, P. Das (1998)

Archivum Mathematicum

Similarity:

In this paper we have considered completely the equation y ' ' ' + a ( t ) y ' ' + b ( t ) y ' + c ( t ) y = 0 , ( * ) where a C 2 ( [ σ , ) , R ) , b C 1 ( [ σ , ) , R ) , c C ( [ σ , ) , R ) and σ R such that a ( t ) 0 , b ( t ) 0 and c ( t ) 0 . It has been shown that the set of all oscillatory solutions of (*) forms a two-dimensional subspace of the solution space of (*) provided that (*) has an oscillatory solution. This answers a question raised by S. Ahmad and A.  C. Lazer earlier.

On nonoscillation of canonical or noncanonical disconjugate functional equations

Bhagat Singh (2000)

Czechoslovak Mathematical Journal

Similarity:

Qualitative comparison of the nonoscillatory behavior of the equations L n y ( t ) + H ( t , y ( t ) ) = 0 and L n y ( t ) + H ( t , y ( g ( t ) ) ) = 0 is sought by way of finding different nonoscillation criteria for the above equations. L n is a disconjugate operator of the form L n = 1 p n ( t ) d d t 1 p n - 1 ( t ) d d t ... d d t · p 0 ( t ) . Both canonical and noncanonical forms of L n have been studied.

Nonoscillation and asymptotic behaviour for third order nonlinear differential equations

Aydın Tiryaki, A. Okay Çelebi (1998)

Czechoslovak Mathematical Journal

Similarity:

In this paper we consider the equation y ' ' ' + q ( t ) y ' α + p ( t ) h ( y ) = 0 , where p , q are real valued continuous functions on [ 0 , ) such that q ( t ) 0 , p ( t ) 0 and h ( y ) is continuous in ( - , ) such that h ( y ) y > 0 for y 0 . We obtain sufficient conditions for solutions of the considered equation to be nonoscillatory. Furthermore, the asymptotic behaviour of these nonoscillatory solutions is studied.