The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On a classification of Hamiltonian tournaments”

Matchings Extend to Hamiltonian Cycles in 5-Cube

Fan Wang, Weisheng Zhao (2018)

Discussiones Mathematicae Graph Theory

Similarity:

Ruskey and Savage asked the following question: Does every matching in a hypercube Qn for n ≥ 2 extend to a Hamiltonian cycle of Qn? Fink confirmed that every perfect matching can be extended to a Hamiltonian cycle of Qn, thus solved Kreweras’ conjecture. Also, Fink pointed out that every matching can be extended to a Hamiltonian cycle of Qn for n ∈ {2, 3, 4}. In this paper, we prove that every matching in Q5 can be extended to a Hamiltonian cycle of Q5.

On Vertices Enforcing a Hamiltonian Cycle

Igor Fabrici, Erhard Hexel, Stanislav Jendrol’ (2013)

Discussiones Mathematicae Graph Theory

Similarity:

A nonempty vertex set X ⊆ V (G) of a hamiltonian graph G is called an H-force set of G if every X-cycle of G (i.e. a cycle of G containing all vertices of X) is hamiltonian. The H-force number h(G) of a graph G is defined to be the smallest cardinality of an H-force set of G. In the paper the study of this parameter is introduced and its value or a lower bound for outerplanar graphs, planar graphs, k-connected graphs and prisms over graphs is determined.

Pancyclism and small cycles in graphs

Ralph Faudree, Odile Favaron, Evelyne Flandrin, Hao Li (1996)

Discussiones Mathematicae Graph Theory

Similarity:

We first show that if a graph G of order n contains a hamiltonian path connecting two nonadjacent vertices u and v such that d(u)+d(v) ≥ n, then G is pancyclic. By using this result, we prove that if G is hamiltonian with order n ≥ 20 and if G has two nonadjacent vertices u and v such that d(u)+d(v) ≥ n+z, where z = 0 when n is odd and z = 1 otherwise, then G contains a cycle of length m for each 3 ≤ m ≤ max (dC(u,v)+1, [(n+19)/13]), d C ( u , v ) being the distance of u and v on a hamiltonian cycle...

Cycles with a given number of vertices from each partite set in regular multipartite tournaments

Lutz Volkmann, Stefan Winzen (2006)

Czechoslovak Mathematical Journal

Similarity:

If x is a vertex of a digraph D , then we denote by d + ( x ) and d - ( x ) the outdegree and the indegree of x , respectively. A digraph D is called regular, if there is a number p such that d + ( x ) = d - ( x ) = p for all vertices x of D . A c -partite tournament is an orientation of a complete c -partite graph. There are many results about directed cycles of a given length or of directed cycles with vertices from a given number of partite sets. The idea is now to combine the two properties. In this article, we examine in particular,...