Displaying similar documents to “Viscosity Solutions of the Bellman Equation for Exit Time Optimal Control Problems with Non-Lipschitz Dynamics”

Viscosity solutions for an optimal control problem with Preisach hysteresis nonlinearities

Fabio Bagagiolo (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study a finite horizon problem for a system whose evolution is governed by a controlled ordinary differential equation, which takes also account of a hysteretic component: namely, the output of a Preisach operator of hysteresis. We derive a discontinuous infinite dimensional Hamilton–Jacobi equation and prove that, under fairly general hypotheses, the value function is the unique bounded and uniformly continuous viscosity solution of the corresponding Cauchy problem.

Large deviations principle by viscosity solutions: the case of diffusions with oblique Lipschitz reflections

Magdalena Kobylanski (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We establish a Large Deviations Principle for diffusions with Lipschitz continuous oblique reflections on regular domains. The rate functional is given as the value function of a control problem and is proved to be good. The proof is based on a viscosity solution approach. The idea consists in interpreting the probabilities as the solutions to some PDEs, make the logarithmic transform, pass to the limit, and then identify the action functional as the solution of the limiting equation. ...

Viscosity solutions for an optimal control problem with Preisach hysteresis nonlinearities

Fabio Bagagiolo (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study a finite horizon problem for a system whose evolution is governed by a controlled ordinary differential equation, which takes also account of a hysteretic component: namely, the output of a Preisach operator of hysteresis. We derive a discontinuous infinite dimensional Hamilton–Jacobi equation and prove that, under fairly general hypotheses, the value function is the unique bounded and uniformly continuous viscosity solution of the corresponding Cauchy problem.

The vanishing viscosity method in infinite dimensions

Piermarco Cannarsa, Giuseppe Da Prato (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

The vanishing viscosity method is adapted to the infinite dimensional case, by showing that the value function of a deterministic optimal control problem can be approximated by the solutions of suitable parabolic equations in Hilbert spaces.

A general Hamilton-Jacobi framework for non-linear state-constrained control problems

Albert Altarovici, Olivier Bokanowski, Hasnaa Zidani (2013)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The paper deals with deterministic optimal control problems with state constraints and non-linear dynamics. It is known for such problems that the value function is in general discontinuous and its characterization by means of a Hamilton-Jacobi equation requires some controllability assumptions involving the dynamics and the set of state constraints. Here, we first adopt the viability point of view and look at the value function as its epigraph. Then, we prove that this epigraph can...