Displaying similar documents to “Boundary layer analysis and quasi-neutral limits in the drift-diffusion equations”

Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces

Stefano Lisini (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study existence and approximation of non-negative solutions of partial differential equations of the type 
 t u - div ( A ( ( f ( u ) ) + u V ) ) = 0 in ( 0 , + ) × n , ( 0 . 1 ) where is a symmetric matrix-valued function of the spatial variable satisfying a uniform ellipticity condition, f : [ 0 , + ) [ 0 , + ) is a suitable non decreasing function, V : n is a convex function. Introducing the energy functional φ ( u ) = n F ( u ( x ) ) d x + n V ( x ) u ( x ) d x , where is a convex function linked to by f ( u ) = u F ' ( u ) - F ( u ) , we show that is the “gradient flow” of with respect to the 2-Wasserstein distance between probability measures on the...

Long-term planning short-term planning in the asymptotical location problem

Alessio Brancolini, Giuseppe Buttazzo, Filippo Santambrogio, Eugene Stepanov (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Given the probability measure over the given region Ω n , we consider the optimal location of a set composed by points in in order to minimize the average distance Σ Ω dist ( x , Σ ) d ν (the classical optimal facility location problem). The paper compares two strategies to find optimal configurations: the long-term one which consists in placing all points at once in an optimal position, and the short-term one which consists in placing the points one by one adding at each step at most one point and...