Displaying similar documents to “On the approximation of front propagation problems with nonlocal terms”

Radiation conditions at the top of a rotational cusp in the theory of water-waves

Sergey A. Nazarov, Jari Taskinen (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We study the linearized water-wave problem in a bounded domain ( a finite pond of water) of 3 , having a cuspidal boundary irregularity created by a submerged body. In earlier publications the authors discovered that in this situation the spectrum of the problem may contain a continuous component in spite of the boundedness of the domain. Here, we proceed to impose and study radiation conditions at a point 𝒪 of the water surface, where a submerged body touches the surface (see...

Impact of the variations of the mixing length in a first order turbulent closure system

Françoise Brossier, Roger Lewandowski (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This paper is devoted to the study of a turbulent circulation model. Equations are derived from the “Navier-Stokes turbulent kinetic energy” system. Some simplifications are performed but attention is focused on non linearities linked to turbulent eddy viscosity  ν t . The mixing length acts as a parameter which controls the turbulent part in ν t . The main theoretical results that we have obtained concern the uniqueness of the solution for bounded eddy viscosities and small values of ...

Relaxation of singular functionals defined on Sobolev spaces

Hafedh Ben Belgacem (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper, we consider a Borel measurable function on the space of m × n matrices f : M m × n ¯ taking the value + , such that its rank-one-convex envelope R f is finite and satisfies for some fixed p > 1 : - c 0 R f ( F ) c ( 1 + F p ) for all F M m × n , where c , c 0 > 0 . Let Ø be a given regular bounded open domain of n . We define on W 1 , p ( Ø ; m ) the functional I ( u ) = Ø f ( u ( x ) ) d x . Then, under some technical restrictions on f , we show that the relaxed functional I ¯ for the weak topology of W 1 , p ( Ø ; m ) has the integral representation: I ¯ ( u ) = Ø Q [ R f ] ( u ( x ) ) d x , where for a given function g , Q g denotes...