Displaying similar documents to “Hematologic Disorders and Bone Marrow–Peripheral Blood Dynamics”

Tumour angiogenesis model with variable vessels' effectiveness

Jan Poleszczuk, Iwona Skrzypczak (2011)

Applicationes Mathematicae

Similarity:

We propose a model of vascular tumour growth, which generalises the well recognised model formulated by Hahnfeldt et al. in 1999. Our model is based on the same idea that the carrying capacity for any solid tumour depends on its vessel density but it also incorporates vasculature quality which may be lost during angiogenesis as recognised by Jain in 2005. In the model we assume that the loss of vessel quality affects the diffusion coefficient inside the tumour. We analyse basic mathematical...

From Bistability to Coupling-Induced Oscillations in a Two-Habitat Model for the Rotifer Population Dynamics

A. B. Medvinsky, M. M. Gonik, A. V. Rusakov, H. Malchow (2008)

Mathematical Modelling of Natural Phenomena

Similarity:

We study the role of interactions between habitats in rotifer dynamics. For this purpose we use a modified version of the Consensus model. The Consensus model has been shown to be realistic enough to reproduce distinguishing features of the rotifer species dynamics. Being uncoupled, intrinsically bistable rotifer populations, which inhabit the regions under different environmental conditions, do not impact each other. We show that migration of the rotifers between the habitats leads...

Memory Effects in Population Dynamics : Spread of Infectious Disease as a Case Study

A. Pimenov, T.C. Kelly, A. Korobeinikov, M.J.A. O’Callaghan, A.V. Pokrovskii, D. Rachinskii (2012)

Mathematical Modelling of Natural Phenomena

Similarity:

Modification of behaviour in response to changes in the environment or ambient conditions, based on memory, is typical of the human and, possibly, many animal species.One obvious example of such adaptivity is, for instance, switching to a safer behaviour when in danger, from either a predator or an infectious disease. In human society such switching to safe behaviour is particularly apparent during epidemics. Mathematically, such changes...

An age-dependent model describing the spread of panleucopenia virus within feline populations

W. E. Fitzgibbon, M. Langlais, J. J. Morgan, D. Pontier, C. Wolf (2003)

Banach Center Publications

Similarity:

Global existence results and long time behavior are provided for a mathematical model describing the propagation of Feline Panleucopenia Virus (FPLV) within a domestic cat population; two transmission modes are involved: a direct one from infective cats to susceptible ones, and an indirect one from the contaminated environment to susceptible cats. A more severe impact of the virus on young cats requires an age-structured model.