Displaying similar documents to “Estimating a discrete distribution via histogram selection”

Estimating a discrete distribution via histogram selection

Nathalie Akakpo (2011)

ESAIM: Probability and Statistics

Similarity:

Our aim is to estimate the joint distribution of a finite sequence of independent categorical variables. We consider the collection of partitions into dyadic intervals and the associated histograms, and we select from the data the best histogram by minimizing a penalized least-squares criterion. The choice of the collection of partitions is inspired from approximation results due to DeVore and Yu. Our estimator satisfies a nonasymptotic oracle-type inequality and adaptivity properties...

Unbiased risk estimation method for covariance estimation

Hélène Lescornel, Jean-Michel Loubes, Claudie Chabriac (2014)

ESAIM: Probability and Statistics

Similarity:

We consider a model selection estimator of the covariance of a random process. Using the Unbiased Risk Estimation (U.R.E.) method, we build an estimator of the risk which allows to select an estimator in a collection of models. Then, we present an oracle inequality which ensures that the risk of the selected estimator is close to the risk of the oracle. Simulations show the efficiency of this methodology.

Two-point priors and minimax estimation of a bounded parameter under convex loss

Agata Boratyńska (2005)

Applicationes Mathematicae

Similarity:

The problem of minimax estimation of a parameter θ when θ is restricted to a finite interval [θ₀,θ₀+m] is studied. The case of a convex loss function is considered. Sufficient conditions for existence of a minimax estimator which is a Bayes estimator with respect to a prior concentrated in two points θ₀ and θ₀+m are obtained. An example is presented.

The LASSO estimator: Distributional properties

Rakshith Jagannath, Neelesh S. Upadhye (2018)

Kybernetika

Similarity:

The least absolute shrinkage and selection operator (LASSO) is a popular technique for simultaneous estimation and model selection. There have been a lot of studies on the large sample asymptotic distributional properties of the LASSO estimator, but it is also well-known that the asymptotic results can give a wrong picture of the LASSO estimator's actual finite-sample behaviour. The finite sample distribution of the LASSO estimator has been previously studied for the special case of...

Nonparametric bivariate estimation for successive survival times.

Carles Serrat, Guadalupe Gómez (2007)

SORT

Similarity:

Several aspects of the analysis of two successive survival times are considered. All the analyses take into account the dependent censoring on the second time induced by the first. Three nonparametric methods are described, implemented and applied to the data coming from a multicentre clinical trial for HIV-infected patients. Visser's and Wang and Wells methods propose an estimator for the bivariate survival function while Gómez and Serrat's method presents a conditional approach for...

Estimating quantiles with Linex loss function. Applications to VaR estimation

Ryszard Zieliński (2005)

Applicationes Mathematicae

Similarity:

Sometimes, e.g. in the context of estimating VaR (Value at Risk), underestimating a quantile is less desirable than overestimating it, which suggests measuring the error of estimation by an asymmetric loss function. As a loss function when estimating a parameter θ by an estimator T we take the well known Linex function exp{α(T-θ)} - α(T-θ) - 1. To estimate the quantile of order q ∈ (0,1) of a normal distribution N(μ,σ), we construct an optimal estimator in the class of all estimators...

Modified minimax quadratic estimation of variance components

Viktor Witkovský (1998)

Kybernetika

Similarity:

The paper deals with modified minimax quadratic estimation of variance and covariance components under full ellipsoidal restrictions. Based on the, so called, linear approach to estimation variance components, i. e. considering useful local transformation of the original model, we can directly adopt the results from the linear theory. Under normality assumption we can can derive the explicit form of the estimator which is formally find to be the Kuks–Olman type estimator.

On-line nonparametric estimation.

Rafail Khasminskii (2004)

SORT

Similarity:

A survey of some recent results on nonparametric on-line estimation is presented. The first result deals with an on-line estimation for a smooth signal S(t) in the classic 'signal plus Gaussian white noise' model. Then an analogous on-line estimator for the regression estimation problem with equidistant design is described and justified. Finally some preliminary results related to the on-line estimation for the diffusion observed process are described.

Changepoint estimation for dependent and non-stationary panels

Michal Pešta, Barbora Peštová, Matúš Maciak (2020)

Applications of Mathematics

Similarity:

The changepoint estimation problem of a common change in panel means for a very general panel data structure is considered. The observations within each panel are allowed to be generally dependent and non-stationary. Simultaneously, the panels are weakly dependent and non-stationary among each other. The follow up period can be extremely short and the changepoint magnitudes may differ across the panels accounting also for a specific situation that some magnitudes are equal to zero (thus,...