The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Upper bounds for k-th coset representatives modulo n”

The ternary Goldbach problem in arithmetic progressions

Jianya Liu, Tao Zhan (1997)

Acta Arithmetica

Similarity:

For a large odd integer N and a positive integer r, define b = (b₁,b₂,b₃) and ( N , r ) = b ³ : 1 b j r , ( b j , r ) = 1 a n d b + b + b N ( m o d r ) . It is known that    ( N , r ) = r ² p | r p | N ( ( p - 1 ) ( p - 2 ) / p ² ) p | r p N ( ( p ² - 3 p + 3 ) / p ² ) . Let ε > 0 be arbitrary and R = N 1 / 8 - ε . We prove that for all positive integers r ≤ R, with at most O ( R l o g - A N ) exceptions, the Diophantine equation ⎧N = p₁+p₂+p₃, ⎨ p j b j ( m o d r ) , j = 1,2,3, ⎩ with prime variables is solvable whenever b ∈ (N,r), where A > 0 is arbitrary.