The ternary Goldbach problem in arithmetic progressions

Jianya Liu; Tao Zhan

Acta Arithmetica (1997)

  • Volume: 82, Issue: 3, page 197-227
  • ISSN: 0065-1036

Abstract

top
For a large odd integer N and a positive integer r, define b = (b₁,b₂,b₃) and ( N , r ) = b ³ : 1 b j r , ( b j , r ) = 1 a n d b + b + b N ( m o d r ) . It is known that    ( N , r ) = r ² p | r p | N ( ( p - 1 ) ( p - 2 ) / p ² ) p | r p N ( ( p ² - 3 p + 3 ) / p ² ) . Let ε > 0 be arbitrary and R = N 1 / 8 - ε . We prove that for all positive integers r ≤ R, with at most O ( R l o g - A N ) exceptions, the Diophantine equation ⎧N = p₁+p₂+p₃, ⎨ p j b j ( m o d r ) , j = 1,2,3, ⎩ with prime variables is solvable whenever b ∈ (N,r), where A > 0 is arbitrary.

How to cite

top

Jianya Liu, and Tao Zhan. "The ternary Goldbach problem in arithmetic progressions." Acta Arithmetica 82.3 (1997): 197-227. <http://eudml.org/doc/207088>.

@article{JianyaLiu1997,
abstract = {For a large odd integer N and a positive integer r, define b = (b₁,b₂,b₃) and $(N,r) = \{b∈ ℕ³ : 1 ≤ b_j ≤ r, (b_j, r) = 1 and b₁+b₂+b₃ ≡ N (mod r)\}. $It is known that    $#(N,r) = r² ∏_\{p|r\}_\{p|N\} ((p-1)(p-2)/p²) ∏_\{p|r\}_\{p∤N\} ((p²-3p+3)/p²)$. Let ε > 0 be arbitrary and $R = N^\{1/8-ε\}$. We prove that for all positive integers r ≤ R, with at most $O(Rlog^\{-A\}N)$ exceptions, the Diophantine equation ⎧N = p₁+p₂+p₃, ⎨ $p_j ≡ b_j (mod r),$ j = 1,2,3,$ $⎩ with prime variables is solvable whenever b ∈ (N,r), where A > 0 is arbitrary.},
author = {Jianya Liu, Tao Zhan},
journal = {Acta Arithmetica},
keywords = {ternary Goldbach problem; exponential sum over primes in arithmetic progressions; mean-value theorem; arithmetic progressions; circle method; major-arcs mean-value estimate; exponential sum over primes},
language = {eng},
number = {3},
pages = {197-227},
title = {The ternary Goldbach problem in arithmetic progressions},
url = {http://eudml.org/doc/207088},
volume = {82},
year = {1997},
}

TY - JOUR
AU - Jianya Liu
AU - Tao Zhan
TI - The ternary Goldbach problem in arithmetic progressions
JO - Acta Arithmetica
PY - 1997
VL - 82
IS - 3
SP - 197
EP - 227
AB - For a large odd integer N and a positive integer r, define b = (b₁,b₂,b₃) and $(N,r) = {b∈ ℕ³ : 1 ≤ b_j ≤ r, (b_j, r) = 1 and b₁+b₂+b₃ ≡ N (mod r)}. $It is known that    $#(N,r) = r² ∏_{p|r}_{p|N} ((p-1)(p-2)/p²) ∏_{p|r}_{p∤N} ((p²-3p+3)/p²)$. Let ε > 0 be arbitrary and $R = N^{1/8-ε}$. We prove that for all positive integers r ≤ R, with at most $O(Rlog^{-A}N)$ exceptions, the Diophantine equation ⎧N = p₁+p₂+p₃, ⎨ $p_j ≡ b_j (mod r),$ j = 1,2,3,$ $⎩ with prime variables is solvable whenever b ∈ (N,r), where A > 0 is arbitrary.
LA - eng
KW - ternary Goldbach problem; exponential sum over primes in arithmetic progressions; mean-value theorem; arithmetic progressions; circle method; major-arcs mean-value estimate; exponential sum over primes
UR - http://eudml.org/doc/207088
ER -

References

top
  1. [A] Ayoub R., On Rademacher's extension of the Goldbach-Vinogradov theorem, Trans. Amer. Math. Soc. 74 (1953), 482-491. Zbl0050.27001
  2. [B] Balog A., The prime k-tuplets conjecture on average, in: Analytic Number Theory (Allerton Park, Ill.), Birkhäuser, 1990, 47-75. 
  3. [BP] Balog A. and Perelli A., Exponential sums over primes in an arithmetic progression, Proc. Amer. Math. Soc. 93 (1985), 578-582. Zbl0524.10030
  4. [D] Davenport H., Multiplicative Number Theory, revised by H. L. Montgomery, Springer, 1980. Zbl0453.10002
  5. [HL] Hardy G. H. and Littlewood J. E., Some problems of 'partitio numerorumi' III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), 1-70. Zbl48.0143.04
  6. [La] Lavrik A. F., The number of k-twin primes lying on an interval of a given length, Dokl. Akad. Nauk SSSR 136 (1961), 281-283 (in Russian); English transl.: Soviet Math. Dokl. 2 (1961), 52-55. 
  7. [Li] Liu J. Y., The Goldbach-Vinogradov theorem with primes in a thin subset, Chinese Ann. Math., to appear. 
  8. [LT] Liu M. C. and Tsang K. M., Small prime solutions of linear equations, in: Théorie des Nombres, J.-M. De Koninck and C. Levesque (eds.), de Gruyter, Berlin, 1989, 595-624. 
  9. [MP] Maier H. and Pomerance C., Unusually large gaps between consecutive primes, Trans. Amer. Math. Soc. 332 (1990), 201-237. Zbl0706.11052
  10. [Mi] Mikawa H., On prime twins in arithmetic progressions, Tsukuba J. Math. 16 (1992), 377-387. Zbl0778.11053
  11. [Mo] Montgomery H. L., Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, 1971. Zbl0216.03501
  12. [R] Rademacher H., Über eine Erweiterung des Goldbachschen Problems, Math. Z. 25 (1926), 627-660. Zbl52.0167.04
  13. [T] Titchmarsh E. C., The Theory of the Riemann Zeta-Function, 2nd ed., revised by D. R. Heath-Brown, Oxford Univ. Press, 1986. Zbl0601.10026
  14. [Va] Vaughan R. C., An elementary method in prime number theory, in: Recent Progress in Analytic Number Theory, H. Halberstam and C. Hooley (eds.), Vol. 1, Academic Press, 1981, 341-348. 
  15. [Vi] Vinogradov I. M., Some theorems concerning the theory of primes, Mat. Sb. (N.S.) 2 (1937), 179-195. Zbl0017.19803
  16. [W] Wolke D., Some applications to zero-density theorems for L-functions, Acta Math. Hungar. 61 (1993), 241-258. Zbl0790.11075
  17. [Zh] Zhan T., On the representation of odd number as sums of three almost equal primes, Acta Math. Sinica (N.S.) 7 (1991), 259-275. 
  18. [ZL] Zhan T. and Liu J. Y., A Bombieri-type mean-value theorem concerning exponential sums over primes, Chinese Sci. Bull. 41 (1996), 363-366. Zbl0851.11048
  19. [Zu] Zulauf A., Beweis einer Erweiterung des Satzes von Goldbach-Vinogradov, J. Reine Angew. Math. 190 (1952), 169-198. Zbl0048.27603

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.