Operational formulae for certain classical polynomials - III
Santi Kumar Chatterjea (1963)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Santi Kumar Chatterjea (1963)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
S. K. Chatterjea (1963)
Collectanea Mathematica
Similarity:
I. J. Schoenberg, Gabor Szegö (1959-1960)
Compositio Mathematica
Similarity:
Mohd Akhlaq Malik (2013)
Matematički Vesnik
Similarity:
F. T. Howard (1979)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Santi Kumar Chatterjea (1963)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Al-Salam, W.A., Chihara, T.S. (1979)
Portugaliae mathematica
Similarity:
Khichi, K.S. (1967)
Portugaliae mathematica
Similarity:
Zagorodniuk, S. (2001)
Serdica Mathematical Journal
Similarity:
Orthonormal polynomials on the real line {pn (λ)} n=0 ... ∞ satisfy the recurrent relation of the form: λn−1 pn−1 (λ) + αn pn (λ) + λn pn+1 (λ) = λpn (λ), n = 0, 1, 2, . . . , where λn > 0, αn ∈ R, n = 0, 1, . . . ; λ−1 = p−1 = 0, λ ∈ C. In this paper we study systems of polynomials {pn (λ)} n=0 ... ∞ which satisfy the equation: αn−2 pn−2 (λ) + βn−1 pn−1 (λ) + γn pn (λ) + βn pn+1 (λ) + αn pn+2 (λ) = λ2 pn (λ), n = 0, 1, 2, . . . , where αn > 0, βn ∈ C, γn ∈ R, n = 0, 1, 2, ....
S. K. Chatterjea (1960)
Rendiconti del Seminario Matematico della Università di Padova
Similarity: