On a diophantine equation
J Cassels (1960)
Acta Arithmetica
Similarity:
J Cassels (1960)
Acta Arithmetica
Similarity:
Ligh, Steve, Bourque, Keith (1989)
International Journal of Mathematics and Mathematical Sciences
Similarity:
K. Kubota (1977)
Acta Arithmetica
Similarity:
Stéphane Louboutin, M. F. Newman (1998)
Acta Mathematica et Informatica Universitatis Ostraviensis
Similarity:
Susil Kumar Jena (2014)
Colloquium Mathematicae
Similarity:
We prove that for each n ∈ ℕ₊ the Diophantine equation A² ± nB⁴ + C⁴ = D⁸ has infinitely many primitive integer solutions, i.e. solutions satisfying gcd(A,B,C,D) = 1.
Lin, Ying-Jie (2009)
Integers
Similarity:
Arif, S. Akhtar, Al-Ali, Amal S. (2002)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Szalay, László (2007)
Annales Mathematicae et Informaticae
Similarity:
Bapoungué, Lionel (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Petulante, Nelson, Kaja, Ifeoma (2000)
International Journal of Mathematics and Mathematical Sciences
Similarity: