The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Diagonal equations over p-adic fields”

Linear independence of values of a certain generalisation of the exponential function – a new proof of a theorem of Carlson

Rolf Wallisser (2005)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let Q be a nonconstant polynomial with integer coefficients and without zeros at the non–negative integers. Essentially with the method of Hermite, a new proof is given on linear independence of values at rational points of the function G ( x ) = n = 0 x n Q ( 1 ) Q ( 2 ) Q ( n ) .

On the power-series expansion of a rational function

D. V. Lee (1992)

Acta Arithmetica

Similarity:

Introduction. The problem of determining the formula for P S ( n ) , the number of partitions of an integer into elements of a finite set S, that is, the number of solutions in non-negative integers, h s , . . . , h s k , of the equation hs₁ s₁ + ... + hsk sk = n, was solved in the nineteenth century (see Sylvester [4] and Glaisher [3] for detailed accounts). The solution is the coefficient of x i n [(1-xs₁)... (1-xsk)]-1, expressions for which they derived. Wright [5] indicated a simpler method by which to find part...