Displaying similar documents to “Adaptive compensators for perturbed positive real infinite-dimensional systems”

Two observer-based tracking algorithms for a unicycle mobile robot

Janusz Jakubiak, Erjen Lefeber, Krzysztof Tchoń, Henk Nijmeijer (2002)

International Journal of Applied Mathematics and Computer Science

Similarity:

A trajectory tracking problem for the three-dimensional kinematic model of a unicycle-type mobile robot is considered. It is assumed that only two of the tracking error coordinates are measurable. By means of cascaded systems theory we develop observers for each of the error coordinates and show the K-exponential convergence of the tracking error in combined closed-loop observer-controller systems. The results are illustrated with computer simulations.

On the circle criterion for boundary control systems in factor form : Lyapunov stability and Lur’e equations

Piotr Grabowski, Frank M. Callier (2006)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

A Lur’e feedback control system consisting of a linear, infinite-dimensional system of boundary control in factor form and a nonlinear static sector type controller is considered. A criterion of absolute strong asymptotic stability of the null equilibrium is obtained using a quadratic form Lyapunov functional. The construction of such a functional is reduced to solving a Lur’e system of equations. A sufficient strict circle criterion of solvability of the latter is found, which is based...

A variable structure observer for the control of robot manipulators

Abdelkader Abdessameud, Mohamed Khelfi (2006)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper deals with the application of a variable structure observer developed for a class of nonlinear systems to solve the trajectory tracking problem for rigid robot manipulators. The analyzed approach to observer design proposes a simple design methodology for systems having completely observable linear parts and bounded nonlinearities andor uncertainties. This observer is basically the conventional Luenberger observer with an additional switching term that is used to guarantee...

A comparison of two FEM-based methods for the solution of the nonlinear output regulation problem

Branislav Rehák, Sergej Čelikovský, Javier Ruiz, Jorge Orozco-Mora (2009)

Kybernetika

Similarity:

The regulator equation is the fundamental equation whose solution must be found in order to solve the output regulation problem. It is a system of first-order partial differential equations (PDE) combined with an algebraic equation. The classical approach to its solution is to use the Taylor series with undetermined coefficients. In this contribution, another path is followed: the equation is solved using the finite-element method which is, nevertheless, suitable to solve PDE part only....

Integral control of infinite-dimensional systems in the presence of hysteresis: an input-output approach

Hartmut Logemann, Eugene P. Ryan, Ilya Shvartsman (2007)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

This paper is concerned with integral control of systems with hysteresis. Using an input-output approach, it is shown that application of integral control to the series interconnection of either (a) a hysteretic input nonlinearity, an -stable, time-invariant linear system and a non-decreasing globally Lipschitz static output nonlinearity, or (b) an -stable, time-invariant linear system and a hysteretic output nonlinearity, guarantees, under certain assumptions,...