Displaying similar documents to “Stabilising solutions to a class of nonlinear optimal state tracking problems using radial basis function networks”

Neural network-based MRAC control of dynamic nonlinear systems

Ghania Debbache, Abdelhak Bennia, Noureddine Golea (2006)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper presents direct model reference adaptive control for a class of nonlinear systems with unknown nonlinearities. The model following conditions are assured by using adaptive neural networks as the nonlinear state feedback controller. Both full state information and observer-based schemes are investigated. All the signals in the closed loop are guaranteed to be bounded and the system state is proven to converge to a small neighborhood of the reference model state. It is also...

A nonlinear dynamic inversion-based neurocontroller for unmanned combat aerial vehicles during aerial refuelling

Jimoh Olarewaju Pedro, Aarti Panday, Laurent Dala (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

The paper presents the development of modelling and control strategies for a six-degree-of-freedom, unmanned combat aerial vehicle with the inclusion of the centre of gravity position travel during the straight-leg part of an in-flight refuelling manoeuvre. The centre of gravity position travel is found to have a parabolic variation with an increasing mass of aircraft. A nonlinear dynamic inversion-based neurocontroller is designed for the process under investigation. Three radial basis...

Input constraints handling in an MPC/feedback linearization scheme

Jiamei Deng, Victor M. Becerra, Richard Stobart (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

The combination of model predictive control based on linear models (MPC) with feedback linearization (FL) has attracted interest for a number of years, giving rise to MPC+FL control schemes. An important advantage of such schemes is that feedback linearizable plants can be controlled with a linear predictive controller with a fixed model. Handling input constraints within such schemes is difficult since simple bound contraints on the input become state dependent because of the nonlinear...

Motor control neural models and systems theory

Kenji Doya, Hidenori Kimura, Aiko Miyamura (2001)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper, we introduce several system theoretic problems brought forward by recent studies on neural models of motor control. We focus our attention on three topics: (i) the cerebellum and adaptive control, (ii) reinforcement learning and the basal ganglia, and (iii) modular control with multiple models. We discuss these subjects from both neuroscience and systems theory viewpoints with the aim of promoting interplay between the two research communities.

Adaptive control scheme based on the least squares support vector machine network

Tarek A. Mahmoud (2011)

International Journal of Applied Mathematics and Computer Science

Similarity:

Recently, a new type of neural networks called Least Squares Support Vector Machines (LS-SVMs) has been receiving increasing attention in nonlinear system identification and control due to its generalization performance. This paper develops a stable adaptive control scheme using the LS-SVM network. The developed control scheme includes two parts: the identification part that uses a modified structure of LS-SVM neural networks called the multi-resolution wavelet least squares support...