Displaying similar documents to “A learning paradigm for motion control of mobile manipulators”

A nonlinear dynamic inversion-based neurocontroller for unmanned combat aerial vehicles during aerial refuelling

Jimoh Olarewaju Pedro, Aarti Panday, Laurent Dala (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

The paper presents the development of modelling and control strategies for a six-degree-of-freedom, unmanned combat aerial vehicle with the inclusion of the centre of gravity position travel during the straight-leg part of an in-flight refuelling manoeuvre. The centre of gravity position travel is found to have a parabolic variation with an increasing mass of aircraft. A nonlinear dynamic inversion-based neurocontroller is designed for the process under investigation. Three radial basis...

Motion planning and feedback control for a unicycle in a way point following task: The VFO approach

Maciej Michałek, Krzysztof Kozłowski (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper is devoted to the way point following motion task of a unicycle where the motion planning and the closed-loop motion realization stage are considered. The way point following task is determined by the user-defined sequence of waypoints which have to be passed by the unicycle with the assumed finite precision. This sequence will take the vehicle from the initial state to the target state in finite time. The motion planning strategy proposed in the paper does not involve any...

Adaptive control scheme based on the least squares support vector machine network

Tarek A. Mahmoud (2011)

International Journal of Applied Mathematics and Computer Science

Similarity:

Recently, a new type of neural networks called Least Squares Support Vector Machines (LS-SVMs) has been receiving increasing attention in nonlinear system identification and control due to its generalization performance. This paper develops a stable adaptive control scheme using the LS-SVM network. The developed control scheme includes two parts: the identification part that uses a modified structure of LS-SVM neural networks called the multi-resolution wavelet least squares support...

Stabilising solutions to a class of nonlinear optimal state tracking problems using radial basis function networks

Zahir Ahmida, Abdelfettah Charef, Victor Becerra (2005)

International Journal of Applied Mathematics and Computer Science

Similarity:

A controller architecture for nonlinear systems described by Gaussian RBF neural networks is proposed. The controller is a stabilising solution to a class of nonlinear optimal state tracking problems and consists of a combination of a state feedback stabilising regulator and a feedforward neuro-controller. The state feedback stabilising regulator is computed on-line by transforming the tracking problem into a more manageable regulation one, which is solved within the framework of a nonlinear...

Modeling and control of a 4-wheel skid-steering mobile robot

Krzysztof Kozłowski, Dariusz Pazderski (2004)

International Journal of Applied Mathematics and Computer Science

Similarity:

A mathematical model of a 4-wheel skid-steering mobile robot is presented in a systematic way. The robot is considered as a subsystem consisting of kinematic, dynamic and drive levels. Next, a designing process of a kinematic controller based on the algorithm introduced by (Dixon et al., 2001) is shown. An extension of the kinematic control law at the dynamic and motor levels using the Lyapunov analysis and the backstepping technique is developed. To validate the designed algorithm,...