Displaying similar documents to “On the development of SCILAB compatible software for the analysis and control of repetitive processes”

Verification techniques for sensitivity analysis and design of controllers for nonlinear dynamic systems with uncertainties

Andreas Rauh, Johanna Minisini, Eberhard P. Hofer (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

Control strategies for nonlinear dynamical systems often make use of special system properties, which are, for example, differential flatness or exact input-output as well as input-to-state linearizability. However, approaches using these properties are unavoidably limited to specific classes of mathematical models. To generalize design procedures and to account for parameter uncertainties as well as modeling errors, an interval arithmetic approach for verified simulation of continuoustime...

Linear repetitive process control theory applied to a physical example

Krzysztof Gałkowski, Eric Rogers, Wojciech Paszke, David Owens (2003)

International Journal of Applied Mathematics and Computer Science

Similarity:

In the case of linear dynamics, repetitive processes are a distinct class of 2D linear systems with uses in areas ranging from long-wall coal cutting and metal rolling operations to iterative learning control schemes. The main feature which makes them distinct from other classes of 2D linear systems is that information propagation in one of the two independent directions only occurs over a finite duration. This, in turn, means that a distinct systems theory must be developed for them...

A multi-model approach to Saint-Venant equations: A stability study by LMIs

Valérie Dos Santos Martins, Mickael Rodrigues, Mamadou Diagne (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper deals with the stability study of the nonlinear Saint-Venant Partial Differential Equation (PDE). The proposed approach is based on the multi-model concept which takes into account some Linear Time Invariant (LTI) models defined around a set of operating points. This method allows describing the dynamics of this nonlinear system in an infinite dimensional space over a wide operating range. A stability analysis of the nonlinear Saint-Venant PDE is proposed both by using Linear...

Supervisory predictive control and on-line set-point optimization

Piotr Tatjewski (2010)

International Journal of Applied Mathematics and Computer Science

Similarity:

The subject of this paper is to discuss selected effective known and novel structures for advanced process control and optimization. The role and techniques of model-based predictive control (MPC) in a supervisory (advanced) control layer are first shortly discussed. The emphasis is put on algorithm efficiency for nonlinear processes and on treating uncertainty in process models, with two solutions presented: the structure of nonlinear prediction and successive linearizations for nonlinear...

Robust stabilization of discrete linear repetitive processes with switched dynamics

Jacek Bochniak, Krzysztof Galkowski, Eric Rogers, Anton Kummert (2006)

International Journal of Applied Mathematics and Computer Science

Similarity:

Repetitive processes constitute a distinct class of 2D systems, i.e., systems characterized by information propagation in two independent directions, which are interesting in both theory and applications. They cannot be controlled by a direct extension of the existing techniques from either standard (termed 1D here) or 2D systems theories. Here we give new results on the design of physically based control laws. These results are for a sub-class of discrete linear repetitive processes...

Comparison of the stability boundary and the frequency response stability condition in learning and repetitive control

Szathys Songschon, Richard Longman (2003)

International Journal of Applied Mathematics and Computer Science

Similarity:

In iterative learning control (ILC) and in repetitive control (RC) one is interested in convergence to zero tracking error as the repetitions of the command or the periods in the command progress. A condition based on steady state frequency response modeling is often used, but it does not represent the true stability boundary for convergence. In this paper we show how this useful condition differs from the true stability boundary in ILC and RC, and show that in applications of RC the...