Displaying similar documents to “Towards robustness in neural network based fault diagnosis”

Advances in model-based fault diagnosis with evolutionary algorithms and neural networks

Marcin Witczak (2006)

International Journal of Applied Mathematics and Computer Science

Similarity:

Challenging design problems arise regularly in modern fault diagnosis systems. Unfortunately, the classical analytical techniques often cannot provide acceptable solutions to such difficult tasks. This explains why soft computing techniques such as evolutionary algorithms and neural networks become more and more popular in industrial applications of fault diagnosis. The main objective of this paper is to present recent developments regarding the application of evolutionary algorithms...

An unscented Kalman filter in designing dynamic GMDH neural networks for robust fault detection

Marcin Mrugalski (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper presents an identification method of dynamic systems based on a group method of data handling approach. In particular, a new structure of the dynamic multi-input multi-output neuron in a state-space representation is proposed. Moreover, a new training algorithm of the neural network based on the unscented Kalman filter is presented. The final part of the work contains an illustrative example regarding the application of the proposed approach to robust fault detection of a...

Fault location in EHV transmission lines using artificial neural networks

Tahar Bouthiba (2004)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper deals with the application of artificial neural networks (ANNs) to fault detection and location in extra high voltage (EHV) transmission lines for high speed protection using terminal line data. The proposed neural fault detector and locator were trained using various sets of data available from a selected power network model and simulating different fault scenarios (fault types, fault locations, fault resistances and fault inception angles) and different power system data...

Neural network-based fault diagnosis and fault-tolerant control for nonlinear systems with output measurement noise

Yanjun Shen, Chen Ma, Chenhao Zhao, Zebin Wu (2024)

Kybernetika

Similarity:

In this article, the problems of fault diagnosis (FD) and fault-tolerant control (FTC) are investigated for a class of nonlinear systems with output measurement noise. Due to the influence of measurement noise in the output sensor, the output observation error cannot be accurately obtained, which causes obstacles to the accuracy of FD. To address this issue, an output filter and disturbance estimator are constructed to decrease the negative effects of measurement noise and observer gain...

Data-driven models for fault detection using kernel PCA: A water distribution system case study

Adam Nowicki, Michał Grochowski, Kazimierz Duzinkiewicz (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

Kernel Principal Component Analysis (KPCA), an example of machine learning, can be considered a non-linear extension of the PCA method. While various applications of KPCA are known, this paper explores the possibility to use it for building a data-driven model of a non-linear system-the water distribution system of the Chojnice town (Poland). This model is utilised for fault detection with the emphasis on water leakage detection. A systematic description of the system's framework is...

Nonlinear model predictive control of a boiler unit: A fault tolerant control study

Krzysztof Patan, Józef Korbicz (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper deals with a nonlinear model predictive control designed for a boiler unit. The predictive controller is realized by means of a recurrent neural network which acts as a one-step ahead predictor. Then, based on the neural predictor, the control law is derived solving an optimization problem. Fault tolerant properties of the proposed control system are also investigated. A set of eight faulty scenarios is prepared to verify the quality of the fault tolerant control. Based of...

Detection and accommodation of second order distributed parameter systems with abrupt changes in input term: stability and adaptation

Michael A. Demetriou, Marios M. Polycarpou (1998)

Kybernetika

Similarity:

In this note, we employ nonlinear on-line parameter estimation methods based on adaptive neural network approximators for detecting changes due to actuator faults in a class of second order distributed parameter systems. The motivating example is a cantilevered beam actuated via a pair of piezoceramic patches. We examine changes in the control input term, which provide a simple and practical model of actuator failures. Using Lyapunov redesign methods, a stable learning scheme for fault...