Displaying similar documents to “Input constraints handling in an MPC/feedback linearization scheme”

Stabilising solutions to a class of nonlinear optimal state tracking problems using radial basis function networks

Zahir Ahmida, Abdelfettah Charef, Victor Becerra (2005)

International Journal of Applied Mathematics and Computer Science

Similarity:

A controller architecture for nonlinear systems described by Gaussian RBF neural networks is proposed. The controller is a stabilising solution to a class of nonlinear optimal state tracking problems and consists of a combination of a state feedback stabilising regulator and a feedforward neuro-controller. The state feedback stabilising regulator is computed on-line by transforming the tracking problem into a more manageable regulation one, which is solved within the framework of a nonlinear...

A nonlinear dynamic inversion-based neurocontroller for unmanned combat aerial vehicles during aerial refuelling

Jimoh Olarewaju Pedro, Aarti Panday, Laurent Dala (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

The paper presents the development of modelling and control strategies for a six-degree-of-freedom, unmanned combat aerial vehicle with the inclusion of the centre of gravity position travel during the straight-leg part of an in-flight refuelling manoeuvre. The centre of gravity position travel is found to have a parabolic variation with an increasing mass of aircraft. A nonlinear dynamic inversion-based neurocontroller is designed for the process under investigation. Three radial basis...

Soft computing in modelbased predictive control footnotemark

Piotr Tatjewski, Maciej Ławrynczuk (2006)

International Journal of Applied Mathematics and Computer Science

Similarity:

The application of fuzzy reasoning techniques and neural network structures to model-based predictive control (MPC) is studied. First, basic structures of MPC algorithms are reviewed. Then, applications of fuzzy systems of the Takagi-Sugeno type in explicit and numerical nonlinear MPC algorithms are presented. Next, many techniques using neural network modeling to improve structural or computational properties of MPC algorithms are presented and discussed, from a neural network model...

Neural network-based MRAC control of dynamic nonlinear systems

Ghania Debbache, Abdelhak Bennia, Noureddine Golea (2006)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper presents direct model reference adaptive control for a class of nonlinear systems with unknown nonlinearities. The model following conditions are assured by using adaptive neural networks as the nonlinear state feedback controller. Both full state information and observer-based schemes are investigated. All the signals in the closed loop are guaranteed to be bounded and the system state is proven to converge to a small neighborhood of the reference model state. It is also...

Motor control neural models and systems theory

Kenji Doya, Hidenori Kimura, Aiko Miyamura (2001)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper, we introduce several system theoretic problems brought forward by recent studies on neural models of motor control. We focus our attention on three topics: (i) the cerebellum and adaptive control, (ii) reinforcement learning and the basal ganglia, and (iii) modular control with multiple models. We discuss these subjects from both neuroscience and systems theory viewpoints with the aim of promoting interplay between the two research communities.

A family of model predictive control algorithms with artificial neural networks

Maciej Ławryńczuk (2007)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper details nonlinear Model-based Predictive Control (MPC) algorithms for MIMO processes modelled by means of neural networks of a feedforward structure. Two general MPC techniques are considered: the one with Nonlinear Optimisation (MPC-NO) and the one with Nonlinear Prediction and Linearisation (MPC-NPL). In the first case a nonlinear optimisation problem is solved in real time on-line. In order to reduce the computational burden, in the second case a neural model of the process...