Displaying similar documents to “Singular holomorphic functions for which all fibre-integrals are smooth”

The dynamics of holomorphic maps near curves of fixed points

Filippo Bracci (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Let M be a two-dimensional complex manifold and f : M M a holomorphic map. Let S M be a curve made of fixed points of f , i.e.  Fix ( f ) = S . We study the dynamics near  S in case  f acts as the identity on the normal bundle of the regular part of  S . Besides results of local nature, we prove that if  S is a globally and locally irreducible compact curve such that S · S < 0 then there exists a point p S and a holomorphic f -invariant curve with  p on the boundary which is attracted by  p under the action of  f . These results...

A survey of boundary value problems for bundles over complex spaces

Harris, Adam

Similarity:

Let X be a reduced n -dimensional complex space, for which the set of singularities consists of finitely many points. If X ' X denotes the set of smooth points, the author considers a holomorphic vector bundle E X ' A , equipped with a Hermitian metric h , where A represents a closed analytic subset of complex codimension at least two. The results, surveyed in this paper, provide criteria for holomorphic extension of E across A , or across the singular points of X if A = . The approach taken here is...

Uniqueness and factorization of Coleff-Herrera currents

Mats Andersson (2009)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We prove a uniqueness result for Coleff-Herrera currents which in particular means that if f = ( f 1 , ... , f m ) defines a complete intersection, then the classical Coleff-Herrera product associated to f is the unique Coleff-Herrera current that is cohomologous to 1 with respect to the operator δ f - ¯ , where δ f is interior multiplication with f . From the uniqueness result we deduce that any Coleff-Herrera current on a variety Z is a finite sum of products of residue currents with support on Z and holomorphic...

Variations of complex structures on an open Riemann surface

M. S. Narasimhan (1961)

Annales de l'institut Fourier

Similarity:

Soit U 1 un ouvert dans C m . Soit π 1 : S U 1 une famille holomorphe de structures complexes sur une surface de Riemann non-compacte M , avec S t 0 = π 1 - 1 ( t 0 ) = M . ( S = S ( M × U 1 ) est une structure complexe sur le produit différentiable M × U 1 ). Soit M 1 un domaine relativement compact dans M . On démontre : pour tout voisinage de Stein U de t 0 , assez petit, la famille π 1 : S ( M 1 × U ) U est isomorphe à la famille π : Ω π ( Ω ) , où Ω est un de la variété produit M × C m , π étant la projection M × C m C m . On donne aussi un résultat analogue pour le cas des variations différentiables. ...