The dynamics of holomorphic maps near curves of fixed points

Filippo Bracci

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)

  • Volume: 2, Issue: 3, page 493-520
  • ISSN: 0391-173X

Abstract

top
Let M be a two-dimensional complex manifold and f : M M a holomorphic map. Let S M be a curve made of fixed points of f , i.e.  Fix ( f ) = S . We study the dynamics near  S in case  f acts as the identity on the normal bundle of the regular part of  S . Besides results of local nature, we prove that if  S is a globally and locally irreducible compact curve such that S · S < 0 then there exists a point p S and a holomorphic f -invariant curve with  p on the boundary which is attracted by  p under the action of  f . These results are achieved introducing and studying a family of local holomorphic foliations related to  f near  S .

How to cite

top

Bracci, Filippo. "The dynamics of holomorphic maps near curves of fixed points." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.3 (2003): 493-520. <http://eudml.org/doc/84510>.

@article{Bracci2003,
abstract = {Let $M$ be a two-dimensional complex manifold and $f:M \rightarrow M$ a holomorphic map. Let $S \subset M$ be a curve made of fixed points of $f$, i.e. $\{\rm \{Fix\}\} (f)=S$. We study the dynamics near $S$ in case $f$ acts as the identity on the normal bundle of the regular part of $S$. Besides results of local nature, we prove that if $S$ is a globally and locally irreducible compact curve such that $S\cdot S&lt;0$ then there exists a point $p \in S$ and a holomorphic $f$-invariant curve with $p$ on the boundary which is attracted by $p$ under the action of $f$. These results are achieved introducing and studying a family of local holomorphic foliations related to $f$ near $S$.},
author = {Bracci, Filippo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {493-520},
publisher = {Scuola normale superiore},
title = {The dynamics of holomorphic maps near curves of fixed points},
url = {http://eudml.org/doc/84510},
volume = {2},
year = {2003},
}

TY - JOUR
AU - Bracci, Filippo
TI - The dynamics of holomorphic maps near curves of fixed points
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 3
SP - 493
EP - 520
AB - Let $M$ be a two-dimensional complex manifold and $f:M \rightarrow M$ a holomorphic map. Let $S \subset M$ be a curve made of fixed points of $f$, i.e. ${\rm {Fix}} (f)=S$. We study the dynamics near $S$ in case $f$ acts as the identity on the normal bundle of the regular part of $S$. Besides results of local nature, we prove that if $S$ is a globally and locally irreducible compact curve such that $S\cdot S&lt;0$ then there exists a point $p \in S$ and a holomorphic $f$-invariant curve with $p$ on the boundary which is attracted by $p$ under the action of $f$. These results are achieved introducing and studying a family of local holomorphic foliations related to $f$ near $S$.
LA - eng
UR - http://eudml.org/doc/84510
ER -

References

top
  1. [1] M. Abate, Diagonalization of non-diagonalizable discrete holomorphic dynamical systems, Amer. J. Math. 122 (2000), 757-781. Zbl0966.32018MR1771573
  2. [2] M. Abate, The residual index and the dynamics of holomorphic maps tangent to the identity, Duke Math. J. 107 (2001), 173-207. Zbl1015.37035MR1815255
  3. [3] P. Baum – R. Bott, Singularities of holomorphic foliations, J. Differential Geom. 7 (1972), 279-342. Zbl0268.57011MR377923
  4. [4] F. Bracci – F. Tovena, Residual indices of holomorphic maps relative to singular curves of fixed points on surfaces, Math. Z. 242 (2002), 481-490. Zbl1052.37037MR1985461
  5. [5] F. E. Brochero-Martinez, Groups of germs of analytic diffeomorphisms in ( 2 , 0 ) , J. Dynam. Control Systems 9 (2003), 1-32. Zbl1017.37011MR1956442
  6. [6] M. Brunella, Birational geometry of foliations, First Latin American Congress of Math., IMPA, Rio de Janeiro, Brazil (2000). Zbl1073.14022MR1948251
  7. [7] C. Camacho – P. Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. 115 (1982), 579-595. Zbl0503.32007MR657239
  8. [8] J. Cano, Construction of invariant curves for singular holomorphic vector fields, Proc. Amer. Math. Soc. 125 (1997), 2649-2650. Zbl0890.34001MR1389507
  9. [9] F. degli Innocenti, Dinamica di germi di foliazioni e diffeomorfismi olomorfi vicino a curve singolari, Tesi di Laurea, Firenze, 2003. 
  10. [10] J. Écalle, Les fonctions résurgentes, Tome III: L’équation du pont et la classification analytiques des objects locaux, Publ. Math. Orsay 85-5 Université de Paris-Sud, Orsay, 1985. Zbl0602.30029
  11. [11] R. C. Gunning – H. Rossi, “Analytic functions of several complex variables”, Prentice-Hall, 1965. Zbl0141.08601MR180696
  12. [12] M. Hakim, Analytic transformations of ( p , 0 ) tangent to the identity, Duke Math. J. 92 (1998), 403-428. Zbl0952.32012MR1612730
  13. [13] H. B. Laufer, “Normal two-dimensional singularities”, Ann. Math. Stud. 71, 1971. Zbl0245.32005MR320365
  14. [14] D. Lehmann, Résidus des sous-variétés invariants d’un feuilletage singulier, Ann. Inst. Fourier, Grenoble 41 (1991), 211-258. Zbl0727.57024MR1112198
  15. [15] D. Lehmann – T. Suwa, Residues of holomorphic vector fields relative to singular invariant subvarieties, J. Differential Geom. 42 (1995), 165-192. Zbl0844.32007MR1350698
  16. [16] Y. Nishimura, Automorphisms analytiques admettant des sous-variétés de points fixés attractives dans la direction transversale, J. Math. Kyoto Univ. 23 (1983), 289-299. Zbl0545.32014MR706166
  17. [17] M. Sebastiani, Sur l’existence de séparatrices locales des feuilletages des surfaces, An. Acad. Brasil Ciênc. 69 (1997), 159-162. Zbl0887.57033MR1754036
  18. [18] T. Suwa, Indices of holomorphic vector fields relative to invariant curves on surfaces, Proc. Amer. Math. Soc. 123 (1995), 2989-2997. Zbl0866.32016MR1291793
  19. [19] T. Ueda, Analytic transformations of two complex variables with parabolic fixed points, preprint, 1997. 
  20. [20] B. J. Weickert, Attracting basins for automorphisms of 2 , Invent. Math. 132 (1998), 581-605. Zbl0932.37028MR1625716
  21. [21] H. Wu, Complex stable manifolds of holomorphic diffeomorphisms, Indiana Univ. Math. J. 42 (1993), 1349-1358. Zbl0811.58009MR1266097

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.