The dynamics of holomorphic maps near curves of fixed points
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)
- Volume: 2, Issue: 3, page 493-520
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topBracci, Filippo. "The dynamics of holomorphic maps near curves of fixed points." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.3 (2003): 493-520. <http://eudml.org/doc/84510>.
@article{Bracci2003,
abstract = {Let $M$ be a two-dimensional complex manifold and $f:M \rightarrow M$ a holomorphic map. Let $S \subset M$ be a curve made of fixed points of $f$, i.e. $\{\rm \{Fix\}\} (f)=S$. We study the dynamics near $S$ in case $f$ acts as the identity on the normal bundle of the regular part of $S$. Besides results of local nature, we prove that if $S$ is a globally and locally irreducible compact curve such that $S\cdot S<0$ then there exists a point $p \in S$ and a holomorphic $f$-invariant curve with $p$ on the boundary which is attracted by $p$ under the action of $f$. These results are achieved introducing and studying a family of local holomorphic foliations related to $f$ near $S$.},
author = {Bracci, Filippo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {493-520},
publisher = {Scuola normale superiore},
title = {The dynamics of holomorphic maps near curves of fixed points},
url = {http://eudml.org/doc/84510},
volume = {2},
year = {2003},
}
TY - JOUR
AU - Bracci, Filippo
TI - The dynamics of holomorphic maps near curves of fixed points
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 3
SP - 493
EP - 520
AB - Let $M$ be a two-dimensional complex manifold and $f:M \rightarrow M$ a holomorphic map. Let $S \subset M$ be a curve made of fixed points of $f$, i.e. ${\rm {Fix}} (f)=S$. We study the dynamics near $S$ in case $f$ acts as the identity on the normal bundle of the regular part of $S$. Besides results of local nature, we prove that if $S$ is a globally and locally irreducible compact curve such that $S\cdot S<0$ then there exists a point $p \in S$ and a holomorphic $f$-invariant curve with $p$ on the boundary which is attracted by $p$ under the action of $f$. These results are achieved introducing and studying a family of local holomorphic foliations related to $f$ near $S$.
LA - eng
UR - http://eudml.org/doc/84510
ER -
References
top- [1] M. Abate, Diagonalization of non-diagonalizable discrete holomorphic dynamical systems, Amer. J. Math. 122 (2000), 757-781. Zbl0966.32018MR1771573
- [2] M. Abate, The residual index and the dynamics of holomorphic maps tangent to the identity, Duke Math. J. 107 (2001), 173-207. Zbl1015.37035MR1815255
- [3] P. Baum – R. Bott, Singularities of holomorphic foliations, J. Differential Geom. 7 (1972), 279-342. Zbl0268.57011MR377923
- [4] F. Bracci – F. Tovena, Residual indices of holomorphic maps relative to singular curves of fixed points on surfaces, Math. Z. 242 (2002), 481-490. Zbl1052.37037MR1985461
- [5] F. E. Brochero-Martinez, Groups of germs of analytic diffeomorphisms in , J. Dynam. Control Systems 9 (2003), 1-32. Zbl1017.37011MR1956442
- [6] M. Brunella, Birational geometry of foliations, First Latin American Congress of Math., IMPA, Rio de Janeiro, Brazil (2000). Zbl1073.14022MR1948251
- [7] C. Camacho – P. Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. 115 (1982), 579-595. Zbl0503.32007MR657239
- [8] J. Cano, Construction of invariant curves for singular holomorphic vector fields, Proc. Amer. Math. Soc. 125 (1997), 2649-2650. Zbl0890.34001MR1389507
- [9] F. degli Innocenti, Dinamica di germi di foliazioni e diffeomorfismi olomorfi vicino a curve singolari, Tesi di Laurea, Firenze, 2003.
- [10] J. Écalle, Les fonctions résurgentes, Tome III: L’équation du pont et la classification analytiques des objects locaux, Publ. Math. Orsay 85-5 Université de Paris-Sud, Orsay, 1985. Zbl0602.30029
- [11] R. C. Gunning – H. Rossi, “Analytic functions of several complex variables”, Prentice-Hall, 1965. Zbl0141.08601MR180696
- [12] M. Hakim, Analytic transformations of tangent to the identity, Duke Math. J. 92 (1998), 403-428. Zbl0952.32012MR1612730
- [13] H. B. Laufer, “Normal two-dimensional singularities”, Ann. Math. Stud. 71, 1971. Zbl0245.32005MR320365
- [14] D. Lehmann, Résidus des sous-variétés invariants d’un feuilletage singulier, Ann. Inst. Fourier, Grenoble 41 (1991), 211-258. Zbl0727.57024MR1112198
- [15] D. Lehmann – T. Suwa, Residues of holomorphic vector fields relative to singular invariant subvarieties, J. Differential Geom. 42 (1995), 165-192. Zbl0844.32007MR1350698
- [16] Y. Nishimura, Automorphisms analytiques admettant des sous-variétés de points fixés attractives dans la direction transversale, J. Math. Kyoto Univ. 23 (1983), 289-299. Zbl0545.32014MR706166
- [17] M. Sebastiani, Sur l’existence de séparatrices locales des feuilletages des surfaces, An. Acad. Brasil Ciênc. 69 (1997), 159-162. Zbl0887.57033MR1754036
- [18] T. Suwa, Indices of holomorphic vector fields relative to invariant curves on surfaces, Proc. Amer. Math. Soc. 123 (1995), 2989-2997. Zbl0866.32016MR1291793
- [19] T. Ueda, Analytic transformations of two complex variables with parabolic fixed points, preprint, 1997.
- [20] B. J. Weickert, Attracting basins for automorphisms of , Invent. Math. 132 (1998), 581-605. Zbl0932.37028MR1625716
- [21] H. Wu, Complex stable manifolds of holomorphic diffeomorphisms, Indiana Univ. Math. J. 42 (1993), 1349-1358. Zbl0811.58009MR1266097
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.