Displaying similar documents to “Toeplitz-Berezin quantization and non-commutative differential geometry”

Generalized Jordan derivations associated with Hochschild 2-cocycles of triangular algebras

Asia Majieed, Jiren Zhou (2010)

Czechoslovak Mathematical Journal

Similarity:

In this paper, we investigate a new type of generalized derivations associated with Hochschild 2-cocycles which is introduced by A.Nakajima (Turk. J. Math. 30 (2006), 403–411). We show that if 𝒰 is a triangular algebra, then every generalized Jordan derivation of above type from 𝒰 into itself is a generalized derivation.

Jordan- and Lie geometries

Wolfgang Bertram (2013)

Archivum Mathematicum

Similarity:

In these lecture notes we report on research aiming at understanding the relation beween algebras and geometries, by focusing on the classes of Jordan algebraic and of associative structures and comparing them with Lie structures. The geometric object sought for, called a generalized projective, resp. an associative geometry, can be seen as a combination of the structure of a symmetric space, resp. of a Lie group, with the one of a projective geometry. The text is designed for readers...