Jordan- and Lie geometries

Wolfgang Bertram

Archivum Mathematicum (2013)

  • Volume: 049, Issue: 5, page 275-293
  • ISSN: 0044-8753

Abstract

top
In these lecture notes we report on research aiming at understanding the relation beween algebras and geometries, by focusing on the classes of Jordan algebraic and of associative structures and comparing them with Lie structures. The geometric object sought for, called a generalized projective, resp. an associative geometry, can be seen as a combination of the structure of a symmetric space, resp. of a Lie group, with the one of a projective geometry. The text is designed for readers having basic knowledge of Lie theory – we give complete definitions and explain the results by presenting examples, such as Grassmannian geometries.

How to cite

top

Bertram, Wolfgang. "Jordan- and Lie geometries." Archivum Mathematicum 049.5 (2013): 275-293. <http://eudml.org/doc/260798>.

@article{Bertram2013,
abstract = {In these lecture notes we report on research aiming at understanding the relation beween algebras and geometries, by focusing on the classes of Jordan algebraic and of associative structures and comparing them with Lie structures. The geometric object sought for, called a generalized projective, resp. an associative geometry, can be seen as a combination of the structure of a symmetric space, resp. of a Lie group, with the one of a projective geometry. The text is designed for readers having basic knowledge of Lie theory – we give complete definitions and explain the results by presenting examples, such as Grassmannian geometries.},
author = {Bertram, Wolfgang},
journal = {Archivum Mathematicum},
keywords = {Jordan algebra (triple system; pair); associative algebra (triple systems; pair); Lie algebra (triple system); graded Lie algebra; symmetric space; torsor (heap; groud; principal homogeneous space); homotopy and isotopy; Grassmannian; generalized projective geometry; Jordan algebra (triple system, pair); associative algebra (triple systems, pair); Lie algebra (triple system); graded Lie algebra; symmetric space; torsor (heap, groud, principal homogeneous space); homotopy and isotopy; Grassmannian; generalized projective geometry},
language = {eng},
number = {5},
pages = {275-293},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Jordan- and Lie geometries},
url = {http://eudml.org/doc/260798},
volume = {049},
year = {2013},
}

TY - JOUR
AU - Bertram, Wolfgang
TI - Jordan- and Lie geometries
JO - Archivum Mathematicum
PY - 2013
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 049
IS - 5
SP - 275
EP - 293
AB - In these lecture notes we report on research aiming at understanding the relation beween algebras and geometries, by focusing on the classes of Jordan algebraic and of associative structures and comparing them with Lie structures. The geometric object sought for, called a generalized projective, resp. an associative geometry, can be seen as a combination of the structure of a symmetric space, resp. of a Lie group, with the one of a projective geometry. The text is designed for readers having basic knowledge of Lie theory – we give complete definitions and explain the results by presenting examples, such as Grassmannian geometries.
LA - eng
KW - Jordan algebra (triple system; pair); associative algebra (triple systems; pair); Lie algebra (triple system); graded Lie algebra; symmetric space; torsor (heap; groud; principal homogeneous space); homotopy and isotopy; Grassmannian; generalized projective geometry; Jordan algebra (triple system, pair); associative algebra (triple systems, pair); Lie algebra (triple system); graded Lie algebra; symmetric space; torsor (heap, groud, principal homogeneous space); homotopy and isotopy; Grassmannian; generalized projective geometry
UR - http://eudml.org/doc/260798
ER -

References

top
  1. Berger, M., Les espaces symétriques non–compacts, Ann. Sci. ENS (1957). (1957) Zbl0093.35602
  2. Bertram, W., Jordan geometries by inversions, Preprint, 2013, http://arxiv.org/abs/1308.5888. 
  3. Bertram, W., The projective geometry of a group, arXiv: math.GR/1201.6201. 
  4. Bertram, W., 10.1007/b76884, Lecture Notes in Math., vol. 1754, Springer, Berlin, 2000. (2000) Zbl1014.17024DOI10.1007/b76884
  5. Bertram, W., Generalized projective geometries: General theory and equivalence with Jordan structures, Advances in Geometry 3 (2002), 329–369. (2002) MR1940443
  6. Bertram, W., 10.5802/aif.1942, Ann. Inst. Fourier 53 fasc. 1 (2003), 193–225. (2003) Zbl1038.17023MR1973071DOI10.5802/aif.1942
  7. Bertram, W., Differential geometry, Lie groups and symmetric spaces over general base fields and rings, Mem. Amer. Math. Soc. 192 (900) (2008), x+202, arXiv: math.DG/0502168. (2008) Zbl1144.58002MR2369581
  8. Bertram, W., Homotopes and conformal deformations of symmetric spaces, J. Lie Theory 18 (2008), 301–333, math.RA/0606449. (2008) Zbl1164.17021MR2431118
  9. Bertram, W., 10.1007/s10773-008-9724-z, Int. J. Theor. Phys. 47 (2) (2008), 2754—2782, arXiv: math-ph/0801.3069. (2008) Zbl1160.81398MR2475762DOI10.1007/s10773-008-9724-z
  10. Bertram, W., On the Hermitian projective line as a home for the geometry of Quantum Theory., AIP Conference Proceedings 1079, p. 14–25 (XXVII Workshop on Geometrical Methods in Physics, Bialowieza 2008), American Institute of Physics, New York, 2008. (2008) Zbl1167.81394MR2757694
  11. Bertram, W., Bieliavsky, P., Homotopes of symmetric spaces. I : Construction by algebras with two involutions, arXiv: math.DG/1011.2923. 
  12. Bertram, W., Bieliavsky, P., Homotopes of symmetric spaces. II : Structure Variety and Classification, arXiv: math.DG/1011.3161. 
  13. Bertram, W., Glöckner, H., Neeb, K.–H., 10.1016/S0723-0869(04)80006-9, Exposition. Math. 22 (2004), 213–282, arXiv: math.GM/030330. (2004) Zbl1099.58006MR2069671DOI10.1016/S0723-0869(04)80006-9
  14. Bertram, W., Kinyon, M., Associative geometries. I: Torsors, linear relations and grassmannians, J. Lie Theory 20 (2) (2010), 215–252, arXiv: math.RA/0903.5441. (2010) Zbl1206.20074MR2681368
  15. Bertram, W., Kinyon, M., Associative geometries. II: Involutions, the classical torsors, and their homotopes, J. Lie Theory 20 (2) (2010), 253–282, arXiv: math.RA/0909.4438. (2010) Zbl1206.20075MR2681369
  16. Bertram, W., Neeb, K.–H., Projective completions of Jordan pairs. I: The generalized projective geometry of a Lie algebra, J. Algebra 277 (2) (2004), 193–225, arXiv: math.RA/0306272. (2004) Zbl1100.17012MR2067615
  17. Bertram, W., Neeb, K.–H., 10.1007/s10711-004-4197-6, vec K.-H. Neeb), Geom. Dedicata 112 (1) (2005), 73–113, arXiv: math.GR/0401236. (2005) MR2163891DOI10.1007/s10711-004-4197-6
  18. Chenal, J., 10.1016/j.crma.2008.12.001, C. R. Math. Acad. Sci. Paris 347 (2009), 21–25, arXiv: 1007.4076v1 [math.RA]. (2009) MR2536743DOI10.1016/j.crma.2008.12.001
  19. Chu, Ch.–H., Jordan Structures in Geometry and Analysis, Cambridge University Press, 2012. (2012) Zbl1238.17001MR2885059
  20. Connes, A., Non–commutative Geometry, Academic Press, 1994. (1994) 
  21. Emch, G., Mathematical and Conceptual Foundations of 20th Century Physics, North Holland, 1985. (1985) 
  22. Faraut, J., Koranyi, A., Analysis on Symmetric Cones, Clarendon Press, Oxford, 1994. (1994) Zbl0841.43002
  23. Grgin, E., Petersen, A., 10.1007/BF01617995, Comm. Math. Phys. 50 (1976), 177–188. (1976) Zbl0358.17005DOI10.1007/BF01617995
  24. Jordan archive, Jordan preprint server) http://molle.fernuni-hagen.de/~loos/jordan/index.html. 
  25. Kaneyuki, S., 10.3836/tjm/1270151228, Tokyo J. Math. 8 (1985), 473–482. (1985) Zbl0592.53042DOI10.3836/tjm/1270151228
  26. Koecher, M., The Minnesota Notes on Jordan Algebras and Their Applications (reprint), eprint), Lecture Notes in Mat., vol. 1710, Springer, Berlin, 1999. (1999) 
  27. Koufany, K., Réalisation des espaces symétriques de type Cayley, C. R. Math. Acad. Sci. Paris 318 (1994), 425–428. (1994) Zbl0839.53035
  28. Loos, O., Symmetric Spaces I, Benjamin, New York, 1969. (1969) Zbl0175.48601
  29. Loos, O., 10.1090/S0002-9904-1971-12753-2, Bull. Amer. Math. Soc. 77 (1971), 558–561. (1971) Zbl0228.32012DOI10.1090/S0002-9904-1971-12753-2
  30. Loos, O., Jordan Pairs, Lecture Notes in Math., vol. 460, Springer, Berlin, 1975. (1975) Zbl0301.17003
  31. Loos, O., Bounded Symmetric Domains and Jordan Pairs, University of California, Irvine, 1977, [See http://molle.fernuni-hagen.de/~loos/jordan/index.html]. (1977) 
  32. Loos, O., 10.1007/BF01175045, Math. Z. 189 (1985), 211–226. (1985) Zbl0583.53044DOI10.1007/BF01175045
  33. McCrimmon, K., A Taste of Jordan Algebras, Springer-Verlag, New York, 2004. (2004) Zbl1044.17001MR2014924
  34. Nagano, Tadashi, 10.1090/S0002-9947-1965-0182937-8, Trans. Amer. Math. Soc. 118 (1965), 428–453. (1965) DOI10.1090/S0002-9947-1965-0182937-8
  35. Springer, T. A., Jordan Algebras and Algebraic Groups, Classics in Mathematics, Springer-Verlag, 1998, Reprint of the 1973 edition. (1998) Zbl1024.17018
  36. Takeuchi, Masaru, Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo Sect. I 12 (1965), 81–192. (1965) 
  37. Upmeier, H., Symmetric Banach Manifolds and Jordan C * -algebras, North-Holland Math. Stud., North-Holland Publishing Co., Amsterdam, 1985. (1985) 
  38. Upmeier, H., Jordan algebras in analysis, operator theory, and quantum mechanics, CBMS Regional Conference Series in Mathematics, 67. Published for the Conference Board of the Mathematical Sciences, Washington, DC, American Mathematical Society, Providence, RI, 1987. (1987) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.