3-coloring and other elementary invariants of knots
Józef Przytycki (1998)
Banach Center Publications
Similarity:
Józef Przytycki (1998)
Banach Center Publications
Similarity:
Nelson, Sam (2005)
Algebraic & Geometric Topology
Similarity:
Mohnke, Klaus
Similarity:
Alexander Stoimenow (2003)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Using the recent Gauß diagram formulas for Vassiliev invariants of Polyak-Viro-Fiedler and combining these formulas with the Bennequin inequality, we prove several inequalities for positive knots relating their Vassiliev invariants, genus and degrees of the Jones polynomial. As a consequence, we prove that for any of the polynomials of Alexander/Conway, Jones, HOMFLY, Brandt-Lickorish-Millett-Ho and Kauffman there are only finitely many positive knots with the same polynomial and no...
Paweł Traczyk (1995)
Banach Center Publications
Similarity:
Richard Randell (1998)
Banach Center Publications
Similarity:
We study numerical and polynomial invariants of piecewise-linear knots, with the goal of better understanding the space of all knots and links. For knots with small numbers of edges we are able to find limits on polynomial or Vassiliev invariants sufficient to determine an exact list of realizable knots. We thus obtain the minimal edge number for all knots with six or fewer crossings. For example, the only knot requiring exactly seven edges is the figure-8 knot.
Kitano, Teruaki, Suzuki, Masaaki (2005)
Experimental Mathematics
Similarity:
Isabel Darcy, De Sumners (1998)
Banach Center Publications
Similarity:
The following is an expository article meant to give a simplified introduction to applications of topology to DNA.