Positive knots, closed braids and the Jones polynomial
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)
- Volume: 2, Issue: 2, page 237-285
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [A] N. A’Campo, Generic immersions of curves, knots, monodromy and gordian number, Inst. Hautes Études Sci. Publ. Math. 88 (1998), 151–169. Zbl0960.57007MR1733329
- [Ad] C. C. Adams, “The knot book”, W. H. Freeman & Co., New York, 1994. Zbl0840.57001MR1266837
- [AM] S. Akbulut – J. D. McCarthy, “Casson’s invariant for oriented 3-spheres”, Mathematical notes 36, Princeton, 1990. Zbl0695.57011MR1030042
- [Al] J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), 275–306. Zbl54.0603.03MR1501429JFM54.0603.03
- [BN] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), 423-472. Zbl0898.57001MR1318886
- [BN2] D. Bar-Natan, Bibliography of Vassiliev invariants, available from the web site http:// www.math.toronto.edu/drorbn/VasBib/VasBib.html.
- [BS] D. Bar-Natan – A. Stoimenow, The Fundamental Theorem of Vassiliev invariants, In “Geometry and Physics", Lecture Notes in Pure & Appl.Math. 184, M.Dekker, New York, 1996, 101-134. Zbl0878.57004MR1423158
- [Be] D. Bennequin, Entrelacements et équations de Pfaff, Soc. Math. de France, Astérisque 107-108 (1983), 87-161. Zbl0573.58022MR753131
- [Bi] J. S. Birman, “Braids, links and mapping class groups”, Ann. of Math. Studies 82, Princeton, 1976. Zbl0305.57013
- [Bi2] J. S. Birman, New Points of View in Knot Theory, Bull. Amer. Math. Soc. 28 (1993), 253-287. Zbl0785.57001MR1191478
- [BL] J. S. Birman – X. S. Lin, Knot polynomials and Vassiliev’s invariants, Invent. Math. 111 (1993), 225-270. Zbl0812.57011MR1198809
- [BM] J. S. Birman – W. W. Menasco, Studying knots via braids V: The unlink, Trans. Amer. Math. Soc. 329 (1992), 585-606. Zbl0758.57005MR1030509
- [BW] J. S. Birman – R. F. Williams, Knotted periodic orbits in dynamical systems - I, Lorenz’s equations, Topology 22 (1983), 47-82. Zbl0507.58038MR682059
- [BoW] M. Boileau – C. Weber, Le problème de J. Milnor sur le nombre gordien des nœuds algébriques, Enseign. Math. 30 (1984), 173-222. Zbl0556.57002MR767901
- [BLM] R. D. Brandt – W. B. R. Lickorish – K. Millett, A polynomial invariant for unoriented knots and links, Invent. Math. 84 (1986), 563-573. Zbl0595.57009MR837528
- [Bu] J. v. Buskirk, Positive links have positive Conway polynomial, Springer Lecture Notes in Math. 1144 (1983), 146-159. Zbl0586.57004
- [CG] T. D. Cochran – R. E. Gompf, Applications of Donaldson’s theorems to classical knot concordance, homology 3-spheres and Property P, Topology 27 (1988), 495-512. Zbl0669.57003MR976591
- [Co] J. H. Conway, On enumeration of knots and links, In “Computational Problems in abstract algebra", J. Leech (ed.), 329-358. Pergamon Press, 1969. Zbl0202.54703MR258014
- [Cr] P. R. Cromwell, Homogeneous links, J. London Math. Soc. (series 2) 39 (1989), 535-552. Zbl0685.57004MR1002465
- [Cr2] P. R. Cromwell, Positive braids are visually prime, Proc. London Math. Soc. 67 (1993), 384-424. Zbl0818.57004MR1226607
- [CM] P. R. Cromwell – H. R. Morton, Positivity of knot polynomials on positive links, J. Knot Theory Ramif. 1 (1992), 203-206. Zbl0757.57006MR1164116
- [DT] C. H. Dowker – M. B. Thistlethwaite, Classification of knot projections, Topol. Appl. 16 (1983), 19-31. Zbl0516.57002MR702617
- [Fi] T. Fiedler, On the degree of the Jones polynomial, Topology 30 (1991), 1-8. Zbl0724.57004MR1081930
- [Fi2] T. Fiedler, A small state sum for knots, Topology 32 (1993), 281-294. Zbl0787.57007MR1217069
- [Fi3] T. Fiedler, “Gauss sum invariants for knots and links”, Kluwer Academic Publishers, Mathematics and Its Applications Vol. 532, 2001. Zbl1009.57001MR1948012
- [Fi4] T. Fiedler, Die Casson-Invariante eines positiven Knotens ist nicht kleiner als sein Geschlecht, talk given at the knot theory workshop in Siegen, Germany, 1993.
- [FS] T. Fiedler – A. Stoimenow, New knot and link invariants, Proceedings of the International Conference on Knot Theory “Knots in Hellas, 98", Series on Knots and Everything 24, World Scientific, 2000. Zbl0976.57014MR1865701
- [FW] J. Franks – R. F. Williams, Braids and the Jones-Conway polynomial, Trans. Amer. Math. Soc. 303 (1987), 97-108. Zbl0647.57002MR896009
- [H] P. Freyd – J. Hoste – W. B. R. Lickorish – K. Millett – A. Ocneanu – D. Yetter, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985), 239-246. Zbl0572.57002MR776477
- [Ga] D. Gabai, Genera of the alternating links, Duke Math. J. 53 (1986), 677-681. Zbl0631.57004MR860665
- [Ho] C. F. Ho, A polynomial invariant for knots and links – preliminary report, Abstracts Amer. Math. Soc. 6 (1985), 300.
- [HT] J. Hoste – M. Thistlethwaite, KnotScape, a knot polynomial calculation and table access program, available at http://www.math.utk.edu/~morwen.
- [J] V. F. R. Jones, A polynomial invariant of knots and links via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985), 103-111. Zbl0564.57006MR766964
- [J2] V. F. R. Jones, Hecke algebra representations of of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388. Zbl0631.57005MR908150
- [K] T. Kanenobu, Kauffman polynomials for 2-bridge knots and links, Yokohama Math. J. 38 (1991), 145-154. Zbl0744.57006MR1105072
- [K2] T. Kanenobu, Examples of polynomial invariants for knots and links, Math. Ann. 275 (1986), 555-572. Zbl0584.57005MR859330
- [K3] T. Kanenobu, An evaluation of the first derivative of the Q polynomial of a link, Kobe J. Math. 5 (1988), 179-184. Zbl0675.57004MR990819
- [KM] T. Kanenobu – H. Murakami, 2-bridge knots of unknotting number one, Proc. Amer. Math. Soc. 98(3) (1986), 499-502. Zbl0613.57002MR857949
- [Ka] L. H. Kauffman, “Knots and physics” (second edition), World Scientific, Singapore, 1993. Zbl0868.57001MR1306280
- [Ka2] L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), 417-471. Zbl0763.57004MR958895
- [Ka3] L. H. Kauffman, New invariants in the theory of knots, Amer. Math. Mon. 3 (1988), 195-242. Zbl0657.57001MR935433
- [Km] T. Kawamura, The unknotting numbers of and are 4, Osaka J. Math. 35, (3) (1998), 539-546. Zbl0909.57003MR1648364
- [Km2] T. Kawamura, Relations among the lowest degree of the Jones polynomial and geometric invariants for a closed positive braid, Comment. Math. Helv. 77 (1), (2002), 125-132. Zbl0991.57006MR1898395
- [Kw] A. Kawauchi, “A survey of Knot Theory”, Birkhäuser, Basel-Boston-Berlin, 1991. Zbl0861.57001
- [KMr] P. B. Kronheimer – T. Mrowka, On the genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), 797-808. Zbl0851.57023MR1306022
- [Li] W. B. R. Lickorish, The unknotting number of a classical knot, In “Contemporary Mathematics" 44 (1985), 117-119. Zbl0607.57002MR813107
- [L] X.-S. Lin, Finite type link invariants of 3-manifolds, Topology 33, (1) (1994), 45-71. Zbl0816.57013MR1259514
- [Me] W. W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1986), 37-44. Zbl0525.57003MR721450
- [Me2] W. W. Menasco, The Bennequin-Milnor Unknotting Conjectures, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), 831-836. Zbl0817.57008MR1273914
- [MT] W. W. Menasco – M. B. Thistlethwaite, The Tait flyping conjecture, Bull. Amer. Math. Soc. 25 (1991), 403-412. Zbl0745.57002MR1098346
- [Mi] J. Milnor, "Singular points of complex hypersurfaces", Annals of Math. Studies 61 (1968). Zbl0184.48405MR239612
- [Mo] H. R. Morton, An irreducible 4-string braid with unknotted closure, Math. Proc. Camb. Phil. Soc. 93 (1983), 259-261. Zbl0522.57006MR691995
- [Mo2] H. R. Morton, Seifert circles and knot polynomials, Proc. Cambridge Philos. Soc. 99 (1986), 107-109. Zbl0588.57008MR809504
- [Mu] K. Murasugi, Jones polynomial and classical conjectures in knot theory, Topology 26 (1987), 187-194. Zbl0628.57004MR895570
- [MP] K. Murasugi – J. Przytycki, The skein polynomial of a planar star product of two links, Math. Proc. Cambridge Philos. Soc. 106 (1989), 273-276. Zbl0734.57010MR1002540
- [N] T. Nakamura, Positive alternating links are positively alternating, J. Knot Theory Ramif. 9, (1) (2000), 107-112. Zbl0999.57005MR1749503
- [N2] T. Nakamura, Four-genus and unknotting number of positive knots and links, Osaka J. Math. 37, (2) (2000), 441-451. Zbl0968.57008MR1772843
- [Oh] Y. Ohyama, On the minimal crossing number and the braid index of links, Canad. J. Math. 45, (1) (1993), 117-131. Zbl0780.57006MR1200324
- [PV] M. Polyak – O. Viro, Gauss diagram formulas for Vassiliev invariants, Int. Math. Res. Notes 11 (1994), 445-454. Zbl0851.57010MR1316972
- [PV2] M. Polyak – O. Viro, On the Casson knot invariant, J. Of Knot Theory and Its Ram. 10 (2001) (Special volume of the International Conference on Knot Theory “Knots in Hellas, 98"), 711-738. Zbl0997.57021MR1839698
- [Ro] D. Rolfsen, "Knots and links", Publish or Perish, 1976. Zbl0339.55004MR515288
- [Ru] L. Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58 (1983), 1-37. Zbl0522.57017MR699004
- [Ru2] L. Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. 29 (1993), 51-59. Zbl0789.57004MR1193540
- [Ru3] L. Rudolph, Positive links are strongly quasipositive, “Geometry and Topology Monographs" 2 (1999), Proceedings of the Kirbyfest, 555-562. See also http://www. maths.warwick.ac.uk/gt/GTMon2/ paper25.abs.html. Zbl0962.57004MR1734423
- [St] A. Stoimenow, Gauss sum invariants, Vassiliev invariants and braiding sequences, J. Knot Theory Ramif. 9 (2000), 221-269. Zbl0998.57032MR1749498
- [St2] A. Stoimenow, Polynomials of knots with up to 10 crossings, available on http://www. math.toronto. edu/stoimeno/.
- [St3] A. Stoimenow, Genera of knots and Vassiliev invariants, J. Of Knot Theory and Its Ram. 8 (2) (1999), 253-259. Zbl0937.57010MR1687529
- [St4] A. Stoimenow, A Survey on Vassiliev Invariants for knots, “Mathematics and Education in Mathematics", Proceedings of the XXVII. Spring Conference of the Union of Bulgarian Mathematicians, 1998, 37-47.
- [St5] A. Stoimenow, On some restrictions to the values of the Jones polynomial, preprint. Zbl1076.57015MR2136821
- [St6] A. Stoimenow, Polynomial values, the linking form and unknotting numbers, preprint. Zbl1068.57009MR2106240
- [St7] A. Stoimenow, Knots of genus one, Proc. Amer. Math. Soc. 129, (7) (2001), 2141-2156. Zbl0971.57012MR1825928
- [Ta] T. Tanaka, Unknotting numbers of quasipositive knots, Topology and its Applications 88, (3) (1998), 239-246. Zbl0928.57007MR1632085
- [Th] M. B. Thistlethwaite, A spanning tree expansion for the Jones polynomial, Topology 26 (1987), 297-309. Zbl0622.57003MR899051
- [Tr] P. Traczyk, Non-trivial negative links have positive signature, Manuscripta Math. 61 (1988), 279-284. Zbl0665.57008MR949818
- [Tr2] P. Traczyk, A criterion for signed unknotting number, Contemporary Mathematics 233 (1999), 215-220. Zbl0934.57003MR1701685
- [Va] V. A. Vassiliev, Cohomology of knot spaces, “Theory of Singularities and its Applications" (Providence) V. I. Arnold (ed.), Amer. Math. Soc., Providence, 1990. Zbl0727.57008MR1089670
- [Vo] P. Vogel, Algebraic structures on modules of diagrams, to appear in Invent. Math.
- [Vo2] P. Vogel, Representation of links by braids: A new algorithm, Comment. Math. Helv. 65 (1990), 104-113. Zbl0703.57004MR1036132
- [We] H. Wendt, Die Gordische Auflösung von Knoten, Math. Z. 42 (1937), 680-696. Zbl0016.42005MR1545700
- [Wi] S. Willerton, On the first two Vassiliev invariants, preprint math.GT/0104061. Zbl1116.57300MR1959269
- [Yo] Y. Yokota, Polynomial invariants of positive links, Topology 31 (1992), 805-811. Zbl0772.57017MR1191382
- [Zu] L. Zulli, The rank of the trip matrix of a positive knot diagram, J. Knot Theory Ramif. 6 (1997), 299-301. Zbl0880.57004MR1452443