Displaying similar documents to “Leray residue for singular varieties”

Decompositions of hypersurface singularities oftype J k , 0

Piotr Jaworski (1994)

Annales Polonici Mathematici


Applications of singularity theory give rise to many questions concerning deformations of singularities. Unfortunately, satisfactory answers are known only for simple singularities and partially for unimodal ones. The aim of this paper is to give some insight into decompositions of multi-modal singularities with unimodal leading part. We investigate the J k , 0 singularities which have modality k - 1 but the quasihomogeneous part of their normal form only depends on one modulus.

Removable singularities of solutions of nonlinear singular partial differential equations

Hidetoshi Tahara (1996)

Banach Center Publications


1. Introduction. The study of singularities has been one of the main subjects of research in partial differential equations. In the case of linear equations the singularities are now pretty well understood; but in the nonlinear case there seems to be still very few studies. In this paper I want to discuss the singularities of solutions of a class of nonlinear singular partial differential equations in the complex domain. The class is only a model, but it helps one understand that the...

Real hypersurfaces with many simple singularities.

Eric Westenberger (2005)

Revista Matemática Complutense


In this paper we present constructions of real hypersurfaces with many simple singularities and deduce an asymptotical optimal existence result for hypersurfaces corresponding to T-smooth germs of the equisingular stratum. We proceed along the lines of Shustin-Westenberge (2004) where analogous results were shown for the complex case.

An Algebraic Formula for the Index of a Vector Field on an Isolated Complete Intersection Singularity

H.-Ch. Graf von Bothmer, Wolfgang Ebeling, Xavier Gómez-Mont (2008)

Annales de l’institut Fourier


Let ( V , 0 ) be a germ of a complete intersection variety in n + k , n > 0 , having an isolated singularity at 0 and X be the germ of a holomorphic vector field having an isolated zero at 0 and tangent to V . We show that in this case the homological index and the GSV-index coincide. In the case when the zero of X is also isolated in the ambient space n + k we give a formula for the homological index in terms of local linear algebra.

On higher dimensional Hirzebruch-Jung singularities.

Patrick Popescu-Pampu (2005)

Revista Matemática Complutense


A germ of normal complex analytical surface is called a Hirzebruch-Jung singularity if it is analytically isomorphic to the germ at the 0-dimensional orbit of an affine toric surface. Two such germs are known to be isomorphic if and only if the toric surfaces corresponding to them are equivariantly isomorphic. We extend this result to higher-dimensional Hirzebruch-Jung singularities, which we define to be the germs analytically isomorphic to the germ at the 0-dimensional orbit of an...