An Algebraic Formula for the Index of a Vector Field on an Isolated Complete Intersection Singularity
H.-Ch. Graf von Bothmer[1]; Wolfgang Ebeling[1]; Xavier Gómez-Mont[2]
- [1] Leibniz Universität Hannover Institut für Algebraische Geometrie Postfach 6009 30060 Hannover (Germany)
- [2] CIMAT A.P. 402 Guanajuato, 36000 (México)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 5, page 1761-1783
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBothmer, H.-Ch. Graf von, Ebeling, Wolfgang, and Gómez-Mont, Xavier. "An Algebraic Formula for the Index of a Vector Field on an Isolated Complete Intersection Singularity." Annales de l’institut Fourier 58.5 (2008): 1761-1783. <http://eudml.org/doc/10362>.
@article{Bothmer2008,
abstract = {Let $(V,0)$ be a germ of a complete intersection variety in $\{\mathbb\{C\}\}^\{n+k\}$, $n>0$, having an isolated singularity at $0$ and $X$ be the germ of a holomorphic vector field having an isolated zero at $0$ and tangent to $V$. We show that in this case the homological index and the GSV-index coincide. In the case when the zero of $X$ is also isolated in the ambient space $\{\mathbb\{C\}\}^\{n+k\}$ we give a formula for the homological index in terms of local linear algebra.},
affiliation = {Leibniz Universität Hannover Institut für Algebraische Geometrie Postfach 6009 30060 Hannover (Germany); Leibniz Universität Hannover Institut für Algebraische Geometrie Postfach 6009 30060 Hannover (Germany); CIMAT A.P. 402 Guanajuato, 36000 (México)},
author = {Bothmer, H.-Ch. Graf von, Ebeling, Wolfgang, Gómez-Mont, Xavier},
journal = {Annales de l’institut Fourier},
keywords = {Index; Vector Field; Complete Intersections; Complex; Homology of Complexes; Double Complexes; Homological Index; Buchsbaum-Eisenbud Theory; index; GSV-index; vector field; complete intersection; complex; homology of complexes; homological index; Buchsbaum–Eisenbud theory},
language = {eng},
number = {5},
pages = {1761-1783},
publisher = {Association des Annales de l’institut Fourier},
title = {An Algebraic Formula for the Index of a Vector Field on an Isolated Complete Intersection Singularity},
url = {http://eudml.org/doc/10362},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Bothmer, H.-Ch. Graf von
AU - Ebeling, Wolfgang
AU - Gómez-Mont, Xavier
TI - An Algebraic Formula for the Index of a Vector Field on an Isolated Complete Intersection Singularity
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 5
SP - 1761
EP - 1783
AB - Let $(V,0)$ be a germ of a complete intersection variety in ${\mathbb{C}}^{n+k}$, $n>0$, having an isolated singularity at $0$ and $X$ be the germ of a holomorphic vector field having an isolated zero at $0$ and tangent to $V$. We show that in this case the homological index and the GSV-index coincide. In the case when the zero of $X$ is also isolated in the ambient space ${\mathbb{C}}^{n+k}$ we give a formula for the homological index in terms of local linear algebra.
LA - eng
KW - Index; Vector Field; Complete Intersections; Complex; Homology of Complexes; Double Complexes; Homological Index; Buchsbaum-Eisenbud Theory; index; GSV-index; vector field; complete intersection; complex; homology of complexes; homological index; Buchsbaum–Eisenbud theory
UR - http://eudml.org/doc/10362
ER -
References
top- D. Eisenbud, Commutative Algebra, with a view toward Algebraic Geometry, (1995), Springer Verlag Zbl0819.13001MR1322960
- X. Gómez-Mont, An algebraic formula for the index of a vector field on a hypersurface with an isolated singularity, J. Alg. Geom. 7 (1998), 731-752 Zbl0956.32029MR1642757
- X. Gómez-Mont, L. Giraldo, A law of conservation of number for local Euler characteristics, Contemp. Math. 311 (2002), 251-259 Zbl1051.32010MR1940173
- X. Gómez-Mont, J. Seade, A. Verjovsky, The index of a holomorphic flow with an isolated singularity, Math. Ann. 291 (1991), 737-751 Zbl0725.32012MR1135541
- H. C. Graf von Bothmer, W. Ebeling, X. Gómez-Mont
- D. R. Grayson, M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at
- G. M. Greuel, Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann. 214 (1975), 235-266 Zbl0285.14002MR396554
- G. M. Greuel, Dualität in der lokalen Kohomologie isolierter Singularitäten, Math. Ann. 250 (1980), 157-173 Zbl0417.14003MR582515
- G. M. Greuel, G. Pfister, H. Schönemann, Singular, a Computer Algebra System for polynomial computations, Available at Zbl0902.14040
- O. Klehn, Real and complex indices of vector fields on complete intersection curves with isolated singularity, Compos. Math. 141 (2005), 525-540 Zbl1077.32018MR2134279
- J. A. Seade, T. Suwa, A residue formula for the index of a holomorphic flow, Math. Ann. 304 (1996), 621-634 Zbl0853.32040MR1380446
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.