Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces
A. Pełczyński, P. Wojtaszczyk (1971)
Studia Mathematica
Similarity:
A. Pełczyński, P. Wojtaszczyk (1971)
Studia Mathematica
Similarity:
David Dean, Ivan Singer, Leonard Stembach (1971)
Studia Mathematica
Similarity:
Jorge Mújica (1997)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
In this survey we show that the separable quotient problem for Banach spaces is equivalent to several other problems for Banach space theory. We give also several partial solutions to the problem.
Catherine Finet (1988)
Studia Mathematica
Similarity:
Manuel Valdivia (1997)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
A. Pełczyński (1971)
Studia Mathematica
Similarity:
E. Martín Peinador, E. Induráin, A. Plans Sanz de Bremond, A. A. Rodes Usan (1988)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
The main result of this paper is the following: A separable Banach space X is reflexive if and only if the infimum of the Gelfand numbers of any bounded linear operator defined on X can be computed by means of just one sequence on nested, closed, finite codimensional subspaces with null intersection.
R. Herman, R. Whitley (1967)
Studia Mathematica
Similarity:
R. Fleming, R. McWilliams, J. Retherford (1965)
Studia Mathematica
Similarity:
J. Holub, J. Retherford (1970)
Studia Mathematica
Similarity: