The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the dual of weighted H 1 ( | z | < 1 )

A weighted version of Journé's lemma.

Donald Krug, Alberto Torchinsky (1994)

Revista Matemática Iberoamericana

Similarity:

In this paper we discuss a weighted version of Journé's covering lemma, a substitution for Whitney decomposition of an open set in R where squares are replaced by rectangles. We then apply this result to obtain a sharp version of the atomic decomposition of the weighted Hardy spaces H (R x R ) and a description of their duals when p is close to 1.

L p weighted inequalities for the dyadic square function

Akihito Uchiyama (1995)

Studia Mathematica

Similarity:

We prove that ʃ ( S d f ) p V d x C p , n ʃ | f | p M d ( [ p / 2 ] + 2 ) V d x , where S d is the dyadic square function, M d ( k ) is the k-fold application of the dyadic Hardy-Littlewood maximal function and p > 2.

On the resolvents of dyadic paraproducts.

María Cristina Pereyra (1994)

Revista Matemática Iberoamericana

Similarity:

We consider the boundedness of certain singular integral operators that arose in the study of Sobolev spaces on Lipschitz curves, [P1]. The standard theory available (David and Journé's T1 Theorem, for instance; see [D]) does not apply to this case becuase the operators are not necessarily Calderón-Zygmund operators, [Ch]. One of these operators gives an explicit formula for the resolvent at λ = 1 of the dyadic paraproduct, [Ch].

Weighted inequalities for square and maximal functions in the plane

Javier Duoandikoetxea, Adela Moyua (1992)

Studia Mathematica

Similarity:

We prove weighted inequalities for square functions of Littlewood-Paley type defined from a decomposition of the plane into sectors of lacunary aperture and for the maximal function over a lacunary set of directions. Some applications to multiplier theorems are also given.