Displaying similar documents to “Connections in regular Poisson manifolds over ℝ-Lie foliations”

Some Remarks on Dirac Structures and Poisson Reductions

Zhang-Ju Liu (2000)

Banach Center Publications

Similarity:

Dirac structures are characterized in terms of their characteristic pairs defined in this note and then Poisson reductions are discussed from the point of view of Dirac structures.

Stability of higher order singular points of Poisson manifolds and Lie algebroids

Jean-Paul Dufour, Aïssa Wade (2006)

Annales de l’institut Fourier

Similarity:

We study the stability of singular points for smooth Poisson structures as well as general Lie algebroids. We give sufficient conditions for stability lying on the first-order approximation (not necessarily linear) of a given Poisson structure or Lie algebroid at a singular point. The main tools used here are the classical Lichnerowicz-Poisson cohomology and the deformation cohomology for Lie algebroids recently introduced by Crainic and Moerdijk. We also provide several examples of...

Algebroid nature of the characteristic classes of flat bundles

Jan Kubarski (1998)

Banach Center Publications

Similarity:

The following two homotopic notions are important in many domains of differential geometry: - homotopic homomorphisms between principal bundles (and between other objects), - homotopic subbundles. They play a role, for example, in many fundamental problems of characteristic classes. It turns out that both these notions can be - in a natural way - expressed in the language of Lie algebroids. Moreover, the characteristic homomorphisms of principal bundles (the Chern-Weil homomorphism [K4],...

Tangent lifts of higher order of multiplicative Dirac structures

P. M. Kouotchop Wamba, A. Ntyam (2013)

Archivum Mathematicum

Similarity:

The tangent lifts of higher order of Dirac structures and some properties have been defined in [9] and studied in [11]. By the same way, the tangent lifts of higher order of Poisson structures have been studied in [10] and some applications are given. In particular, the authors have studied the nature of the Lie algebroids and singular foliations induced by these lifting. In this paper, we study the tangent lifts of higher order of multiplicative Poisson structures, multiplicative Dirac...