Displaying similar documents to “Classification of almost spherical pairs of compact simple Lie groups”

A remarkable contraction of semisimple Lie algebras

Dmitri I. Panyushev, Oksana S. Yakimova (2012)

Annales de l’institut Fourier

Similarity:

Recently, E.Feigin introduced a very interesting contraction 𝔮 of a semisimple Lie algebra 𝔤 (see arXiv:1007.0646 and arXiv:1101.1898). We prove that these non-reductive Lie algebras retain good invariant-theoretic properties of 𝔤 . For instance, the algebras of invariants of both adjoint and coadjoint representations of 𝔮 are free, and also the enveloping algebra of 𝔮 is a free module over its centre.

Spherical Stein manifolds and the Weyl involution

Dmitri Akhiezer (2009)

Annales de l’institut Fourier

Similarity:

We consider an action of a connected compact Lie group on a Stein manifold by holomorphic transformations. We prove that the manifold is spherical if and only if there exists an antiholomorphic involution preserving each orbit. Moreover, for a spherical Stein manifold, we construct an antiholomorphic involution, which is equivariant with respect to the Weyl involution of the acting group, and show that this involution stabilizes each orbit. The construction uses some properties of spherical...