The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Iterative and metric algebraic theories”

Some results on metric trees

Asuman Güven Aksoy, Timur Oikhberg (2010)

Banach Center Publications

Similarity:

Using isometric embedding of metric trees into Banach spaces, this paper will investigate barycenters, type and cotype, and various measures of compactness of metric trees. A metric tree (T, d) is a metric space such that between any two of its points there is a unique arc that is isometric to an interval in ℝ. We begin our investigation by examining isometric embeddings of metric trees into Banach spaces. We then investigate the possible images x₀ = π((x₁ + ... + xₙ)/n), where π is...

Metric trees in the Gromov--Hausdorff space

Yoshito Ishiki (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Using the wedge sum of metric spaces, for all compact metrizable spaces, we construct a topological embedding of the compact metrizable space into the set of all metric trees in the Gromov--Hausdorff space with finite prescribed values. As its application, we show that the set of all metric trees is path-connected and all its nonempty open subsets have infinite topological dimension.

Compact widths in metric trees

Asuman Güven Aksoy, Kyle Edward Kinneberg (2011)

Banach Center Publications

Similarity:

The definition of n-width of a bounded subset A in a normed linear space X is based on the existence of n-dimensional subspaces. Although the concept of an n-dimensional subspace is not available for metric trees, in this paper, using the properties of convex and compact subsets, we present a notion of n-widths for a metric tree, called Tn-widths. Later we discuss properties of Tn-widths, and show that the compact width is attained. A relationship between the compact widths and Tn-widths...